SAPIENZA

UNIVERSITA DI ROMA

Taming Complex Bugs in Secure Systems

School of Information Engineering, Computer Science and Statistics

Ph.D. in Engineering in Computer Science (XXXV cycle)

Pietro Borrello
ID number 1647357

Advisor Co-Advisor

Prof. Leonardo Querzoni Prof. Daniele Cono D’Elia

Academic Year 2021/2022

Thesis defended on May 18, 2023

Taming Complex Bugs in Secure Systems
PhD thesis. Sapienza University of Rome

© 2023 Pietro Borrello. All rights reserved

This thesis has been typeset by IXTEX and the Sapthesis class.

Author’s email: borrello@diag.uniromal.it

mailto:borrello@diag.uniroma1.it

To you, the sparkle of my life, constant love, inspiration and strength.
To my family and friends for their constant support.

To all the people I have worked with in this incredible journey:

we’ve done amazing things.

Abstract

Modern systems rely on several layers of abstraction to implement their expected
functionality. Securing complex systems is extremely difficult, as any abstraction
layer can be a possible target. While defense-in-depth techniques help, attackers
resort to chaining multiple exploits to break the different protection layers. Thus,
malicious actors increase their attack complexity to exploit even the most secure
systems.

Vulnerabilities may hide in each layer of a modern system. Software applications
are often the initial attack target, as they are usually exposed to the external world.
Once a malicious actor can exploit a software application, it usually moves to increase
their privilege, targetting other running applications or the operating system to
exfiltrate data or achieve persistence. From a compromised operating system, an
attacker may even target hypervisors and CPU enclaves aimed at protection against
privileged attackers.

Several techniques attempt to slow down attackers, make bugs hard to find,
or, better, find and fix bugs in the first place. Obfuscation techniques complicate
the software under analysis, slowing down program understanding from external
actors. Automatic software testing aims to find bugs during development to avoid
possible vulnerabilities in production systems. Enclaves protect software from a
compromised operating system but require CPUs to support them correctly. However,
given enough time, attackers can often break each protection layer by combining
several complex vulnerabilities to take control of an entire secure system. Thus, a
comprehensive approach needs to tackle vulnerabilities across several system layers
to increase the attack complexity required to break modern systems.

This thesis examines and enhances the security of multiple layers of modern
systems. We design, implement and evaluate techniques to find and mitigate complex
vulnerabilities across most of the layers of secure systems. Throughout the thesis,
we build solutions by sequentially breaking assumptions on attacker capabilities. To
slow down attackers, we propose techniques to obfuscate software against reverse
engineering efficiently. To secure software and operating systems, we improve
existing dynamic testing techniques to find vulnerabilities at a scale and introduce
new strategies to find novel bug patterns. We design compilation frameworks to
protect software from subtle bugs, from type confusion to CPU side-channel bugs.
To deepen the understanding of the threats of privileged attackers, we systematize
hardware bug classes, comparing architectural and microarchitectural vulnerabilities
to software ones. In doing so, we discover the first architectural CPU bug that leaks
confidential data without side channels. Finally, we propose the first CPU framework
to inspect and customize modern CPU microcode, offering an unprecedented view
of the inner working of current systems. As a byproduct of our research, we find,
report, and mitigate over one hundred vulnerabilities across most modern system
layers, including application software, operating systems, and CPUs.

All the prototypes proposed in this thesis are open-sourced to foster future
security research.

Contents

Abstract
Contents

1 Introduction

1.1 Topicof This Work
1.2 Contributions L Lo

Prevent Reverse Engineering Attacks Using Code Reuse
2.1 Introduction
2.2 Background
2.2.1 Code Obfuscation
2.2.2 Return-Oriented Programming
2.3 Adversarial Model
2.3.1 Principles behind Automated Deobfuscation
2.3.2 State-of-the-art Deobfuscation Solutions
2.3.2.1 General Techniques
2.3.2.2 ROP-Aware Techniques
2.4 Program Encoding with ROP
2.4.1 Geometry of a ROP Encoder
2.4.1.1 Gadget Sources
2.4.1.2 Rewritingo L L
2.4.1.3 Control Transfers and Stack Layout
2.4.1.4 Chain Embedding
2.4.2 Translation, Chain Crafting, and Materialization
2.4.2.1 Translation
2.4.2.2 Chain Crafting
2.4.2.3 Materialization
243 Discussion Lo o
2.5 Strengthening ROP Programs
2.5.1 Predicate P;: Anti-ROP-Disassembly
2.5.2 Predicate P,: Preventing Brute-Force Search
2.5.3 Predicate P3: State Space Widening
2.5.4 Gadget Confusion
2.5.5 Further Remarks
2.6 Related Work

\V)

Contents v
2.7 Evaluation.o 26
2.7.1 Efficacy of ROP Strengthening Transformations. 27
2.7.1.1 General Attacks, 27

2.7.1.2 ROP-Aware Attacks 28

2.7.2 Measuring Obfuscation Resilience. 29
2.72.1 Secret Finding 30

2.72.2 Code Coverage 30

2.7.3 Deployability oo 31
2.7.3.1 Coverage 31

2.73.2 Overhead 31

2.733 CaseStudy, 31

2.8 Conclusion e 32
3 Predictive Context-sensitive Fuzzing 34
3.1 Introduction. 34
3.2 Background o 36
3.2.1 Coverage-guided Fuzzing 36
3.2.2 Pointer Analysis 37

3.3 Motivation and Open Problems 38
3.4 Predictive Context Sensitivity 41
3.4.1 Function Cloning, 42
3.4.2 The Need for Selective Sensitivity 43
3.4.3 Data Flow-based Prediction 44
3.4.4 Discussion e e 45

3.5 Implementation 46
3.6 Evaluation. e 47
3.6.1 RQI: Analysis and Compilation Costs 48
3.6.2 RQ2: Effectiveness in Bug Finding 49
3.6.3 RQ3: Internal Wastage 53
3.64 RQ4: NewBugs 54
3.6.5 Discussion o 56

3.7 Related Worko 57
3.8 Conclusion 58
4 TUncovering Container Confusion Bugs in the Linux Kernel 60
4.1 Introduction L 60
4.2 Backgroundo 62
4.2.1 Type Confusion Bugs in C++... andin C 62
4.2.2 Sanitizers 64

4.3 Container Confusion in the Linux Kernel 64
4.3.1 Security Implications L. 64
4.3.2 Running Example 0oL 65
4.3.3 Type Graph Complexity 66

4.4 UNCONTAINED Overview 67
4.5 Container Confusion Sanitizer 68
451 Design oL 68
4.5.2 Implementation oL 71

Contents vi
4.5.3 Evaluation 72
4.5.3.1 Discovered Cases of Container Confusion 72

4.5.3.2 Runtime Overhead 73

4.6 Retrospective Analysis and Bug Patterns 73
4.7 Static Analyzer 78
4.71 Design oL o 78
4.7.2 Implementation L oL 80
4.7.3 Evaluation 81

4.8 Discussion e e e 82
4.9 Related Work 83
4.10 Conclusion 84
5 Automatic Side-Channel Resistance 86
5.1 Introduction e 86
5.2 Background Lo oL 88
5.3 Threat Model 91
5.4 Constantine 92
5.4.1 Overview e e e 92
5.4.2 Control Flow Linearization 93
5.4.2.1 Dummy Execution 94

5.4.2.2 Compiler IR Normalization 95

5.4.2.3 Branch Linearization 95

5.4.2.4 Loop Linearization 96

5.4.2.5 Operand Sanitization 98

5.4.2.6 Code Generation 98

5.4.3 Data Flow Linearization 99
5.4.3.1 Load and Store Wrappers 100

5.4.3.2 Object Lifetime 101

5.4.3.3 Optimizations 101

5.4.4 Support Analyses Lo 102
5.4.4.1 Identifying Sensitive Program Portions 102

5.4.4.2 Points-to Analysis 103

5.4.5 Discussion e 104

5.5 Security Analysis 105
5.6 Performance Evaluation 107
5.7 Case Study 111
5.8 Conclusion e 113
6 Architectural CPU Vulnerabilities 114
6.1 Introduction 114
6.2 Backgroundo o 117
6.2.1 APIC 117
6.2.2 Memory Subsystem Lo 117
6.2.3 Intel SGXo 118
6.2.4 Transient-Execution Attacks 119

6.3 Software and Hardware Vulnerabilities 119
6.3.1 Types of Vulnerabilities 119

Contents vii

6.3.2 Classification of Vulnerabilities 121
6.3.3 Missing Architectural Counterpart Discovery 124
6.4 AEPIC Leak Overview 124
6.4.1 Attack Overview 124
6.4.2 Threat Model 126
6.4.3 Leakage Analysis L. 127
6.4.3.1 Ruling out Microarchitectural Elements. 127
6.4.3.2 Performance Counter Analysis. 128
6.4.4 Building Blocks oL 129
6.4.5 Performance Evaluation 131
6.5 /AEPIC Leak Exploitation 131
6.5.1 Attack Techniques 131
6.5.2 Breaking AES-NT. 132
6.5.3 Breaking RSA 133
6.5.4 Breaking SGX Attestation oL 134
6.6 Mitigations L L 135
6.6.1 Hardware 135
6.6.2 Firmware L o 135
6.6.3 Software 136
6.7 Conclusion L 138
7 Reverse Engineering and Customization of Intel Microcode 139
7.1 Imtroduction 139
7.2 Backgroundo 142
7.2.1 Microcode Structure oo 142
7.2.1.1 Microcode Patches 142
7.2.1.2 Microcode Hooks 142

7.2.1.3 Control Register Bus (CRBUS) and Local Data Ac-
cess Test Port (LDAT) 143
7214 RedUnlock. 143
7.2.1.5 Undocumented Debug Instructions 143
7.3 Framework 143
7.3.1 Static Analysis 144
7.3.2 Dynamic Analysis 145
7.3.2.1 Reverse-Engineering LDAT Accesses 145
7.3.2.2 Microcode Hooks 146
7.3.2.3 Microcode Patches 146
7.3.2.4 Microcode Traces 146
7.3.2.5 Customizing rdrand 147
7.4 Case Study: Reverse-Engineering the Microcode Update Routine . . 148
7.4.1 Reverse Engineering 149
7.4.2 Security Analysis 151
7.5 Case Study: x86 Pointer Authentication Codes 153
7.5.1 Background 153
7.5.2 Implementation oL 153
7.5.3 Security Analysiso 155
7.6 Case Study: psoftware Breakpoints 156

Contents viii
7.6.1 Background o 156

7.6.2 Implementation L. 157

7.7 Case Study: Constant-time Hardware Division 157
7.7.1 Backgroundo 157

7.7.2 Implementation oL 159

7.8 Conclusion 159

8 Conclusions and Future Work 160
A Scientific Publications 162
B Practical Contributions 164
C Chapter 2: Additional Material 166
C.1 Implementation Aspects, 166
C.1.1 Switch Tables 166

C.1.2 From Native to ROPand Back 167

C.1.3 Tail Jumps 167

C.2 Evaluation Additions 168
C.2.1 Functions for Obfuscation Resilience Experiments 168

C.2.2 VM Obfuscation 168

C.2.3 Additional Deployability Experiments 169

D Chapter 3: Additional Material 171
D.1 Additional Charts and Tables 171
D.2 A Fast Intra-procedural Alternative 173
D.3 Cloning Budget 174

E Chapter 4: Additional Material 177
E.1 LMbench Evaluation 177
E.2 Static Analysis Rules 177

F Chapter 5: Additional Material 180
F.1 Conditional Selection 180
F.2 Striding 181
F.3 Field Sensitivity 183
F.4 Recursion and Thread Safety 184
F.5 Correctness 184
F.6 Complete Run-Time Overhead Data, 186

G Chapter 6: Additional Material 187
G.1 Software Workaround 187
G.2 Transient AES Computation. 188
G.3 Performance Counters and CPUs 188
Bibliography 191

Chapter 1

Introduction

Modern application software is incredibly complex and depends on the abstractions
provided by the underlying operating system for its proper functionality and security.
Operating systems are considered some of the most intricate and interdependent
software collections the world relies on. In turn, operating systems proper func-
tionality and security rely on the abstractions provided by CPUs at the hardware
level.

Each abstraction layer depends on the correct implementation of the layer below
it. However, each implementation may deviate from the defined abstraction, and
any such deviation in any abstraction layer may lead to vulnerabilities.

For a system to be considered secure, each layer of abstraction must be im-
plemented correctly, all interactions with the underlying layer must adhere to the
abstraction specification, and any implementation details of the underlying abstrac-
tion must not pose a threat to the security of the abstraction itself.

The software itself may contain flaws that could jeopardize its security. Soft-
ware bugs can range from semantic bugs caused by incorrect algorithms [110] to
implementation bugs in correctly designed algorithms [110] to side-channel bugs in
correctly implemented algorithms [394]. It is crucial to detect these bugs as soon as
possible before malicious actors can exploit them and take control of the system.
Given the complexity of current systems, the question is not whether bugs exist or
not but rather how long it will take someone to find them. The security community
is constantly striving to increase the time it takes malicious actors to find bugs while
simultaneously decreasing the time developers need to detect them.

One way to slow down attackers is through software obfuscation, which makes it
more difficult for attackers who do not have access to the source code to understand
the target [78]. Software obfuscation additionally hides implementation details,
slowing down manual bug finding for attackers interested in exploiting a target. On
the other hand, to quickly find bugs in software, automated testing encompasses
techniques such as static and dynamic analysis. Static analysis involves looking for
static patterns in the codebase to spot bugs, while dynamic analysis collects runtime
information about possibly buggy program executions. Software testing can be
applied to implementations of different abstraction levels, from software applications
to operating systems [139,373,399).

However, not all bugs can be easily detected through software testing. First,

1.1 Topic of This Work 2

silent bugs may not trigger the machinery put in place by dynamic testing techniques,
leading to a corrupted state that goes unnoticed, and static testing techniques may not
be fine-tuned for specific bug classes. Second, critical software, such as cryptographic
software, may not be considered secure even if it does not have implementation
bugs if an attacker can infer secret information through side channels. In this case,
the hardware’s abstraction level is violated by its actual implementation, allowing
changes in the microarchitectural state to become observable.

Finally, some abstractions are inherently challenging to test. CPUs are a prime
example, as their inner workings are largely undocumented. An attacker who can
reverse engineer these implementations may discover bugs that violate assumptions
upon which the operating system relies (e.g., memory protection), breaking these
guarantees.

In practice, attackers combine several possibly-complex vulnerabilities in the
software stack, operating system, and CPUs to take control of an entire system
previously deemed secure.

1.1 Topic of This Work

In this thesis, we pursue a comprehensive approach to examine and enhance the
security of modern systems, from software applications to bare-metal hardware.
Instead of focusing on issues of a single layer of abstraction or improving a single
technique, we approach the problem from multiple perspectives to uncover and
address a wide spectrum of complex vulnerabilities in modern systems. We examine
several layers of abstraction, from application software to operating systems to CPUs,
to gain a comprehensive understanding of modern, complex systems. We tackle the
problem by applying a variety of techniques, such as binary translation, static and
dynamic analysis, and specialized compilation frameworks to identify and mitigate
vulnerabilities.

Throughout the thesis, we build solutions by sequentially breaking assumptions
on attacker capabilities. We start with the weakest attacker, who has no access to
the application source code and tries to recover application logic. We then move
on to attackers who can interact with the applications to exploit them or run local
code to exfiltrate secrets or attack the operating system. We end up considering the
strongest possible attacker by focusing on trusted execution environments, which try
to protect software running on a fully compromised operating system and hypervisor.

In this thesis, we build solutions to find and mitigate vulnerabilities automatically.
Using the techniques proposed, we find, disclose and mitigate more than a hundred
vulnerabilities affecting widely used open-source software, operating systems and
CPUs.

We will explore the following topics:

Software Obfuscation. Software obfuscation aims at preventing reverse engineer-
ing attacks. It involves protection mechanisms applied to source code or directly at
the binary level to prevent an attacker from understanding program logic. It applies
transformations that complicate the program structure while preserving the original
semantics [78]. While the technique is highly effective against a manual attacker,

1.1 Topic of This Work 3

automated attacks are often able to reverse the transformations, bypassing code
obfuscation.

Dynamic Analysis. Dynamic analysis collects information during program execu-
tion and can naturally back automated testing approaches. Several forms of dynamic
analysis exist. This thesis will focus on dynamic analyses tailored to bug finding.
Fuzzing is one of the most widely used: it randomly provides unexpected inputs to
a program to induce crashes while maximizing testing coverage [399]. It is highly
effective in finding bugs, and it is generally sound, by providing concrete inputs
that trigger the crashes found. The analysis usually underapproximates bugs due to
the inability to fully explore program states, incurring false negatives. Moreover,
a fuzzer may explore a buggy program state without triggering a crash, thus not
detecting the bug.

Static Analysis. Static analysis collects patterns in codebases by analyzing static
program information. Several static analysis techniques exist, ranging from the
simplest ones leveraging source code pattern matching [284] to the most complex
ones using symbolic execution to model program states [329]. This thesis will focus
on static analyses tailored to bug finding. Static analysis usually tries to be complete
by overapproximating patterns to scale over huge codebases, thus incurring false
positives. However, it usually relies on precise bug models and cannot find bugs that
are different from the ones expected.

Software Sanitizers. Sanitizers combine with dynamic software testing techniques
to detect undefined behavior, typically by inserting checks at compilation time. Any
time a check detects an invalid program state, it induces a program crash. This allows
sanitizers to detect bugs that are more subtle and would not incur in a program
crash themselves. Several sanitizers exist, ranging from detecting memory corruption
errors [320] to race-conditions [321]. They are usually combined with fuzzers to
automatically explore program states and detect crashes. However, similarly to
static analysis techniques, they only detect the type of bugs they are programmed
to, incurring false negatives when hitting a bug they do not recognize.

Software Mitigations. Software mitigations are similar in spirit to sanitizers
in combatting bug patterns. However, they are designed to prevent bugs from
being exploited instead of detecting them at an early stage. Several mitigations
exist, from simple randomization techniques that make exploits harder [288] to
compiler passes that change code to detect memory corruption while running with
low overhead (e.g., stack canaries [110]) or removing bug patterns (e.g., side-channel
mitigations [301]). Unlike sanitizers, software mitigations generally need a negligible
overhead to be integrated with the software stack. Due to this need, they are usually
more specialized in detecting and preventing subsets of bug patterns.

Hardware Mitigations. Hardware mitigations complement software mitigations
by providing similar functionality at the hardware level. They usually guarantee
higher efficiency than the software ones but require hardware vendors to integrate

1.2 Contributions 4

them. Contrary to software mitigations, a bypass on hardware mitigations cannot
usually be fixed by a software update, and any bug found can only be mitigated. A
partial hardware redesign is usually needed to fix them [236,302].

1.2 Contributions

We make six main contributions in this thesis. We approach different levels of
abstractions to asses complex vulnerabilities in secure systems. We explore different
attackers capabilities to find and mitigate over a hundred bugs in a wide range of
software, operating systems and CPUs. We propose new techniques to automatically
protect software, mitigate subtle issues (e.g., side channels), better find existing bug
classes and introduce new ones.

The thesis is divided as follows. Each chapter introduces the relevant background,
presents the problem under study and the proposed solutions:

Chapter 2: Prevent Reverse Engineering Attacks Using Code Reuse. We
bring novel ideas to the software protection realm, by studying how code reuse
exploitation techniques may provide strong software obfuscation against manual and
automatic reverse-engineering attacks. We present raindrop, a binary obfuscation
framework that transforms functions into obfuscated ropchains. A ropchain is a
sequence of program fragments (or gadgets) that implement a specific functionality,
usually leveraged in modern exploitation [323]. We evaluate our framework showing
how it can provide strong protection against reverse engineering, with a lower
overhead compared to state-of-the-art obfuscation techniques.
The results of this work are presented in:

e P. Borrello, E. Coppa, and D. C. D’Elia. “Hiding in the Particles: When
Return-Oriented Programming Meets Program Obfuscation”. In the Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2021.

While software obfuscation helps against attackers that try to find bugs with no
access to source code, finding and fixing bugs before the software is released prevents
attackers from exploiting them in the first place. Automated techniques, like fuzzing,
are among the most effective approaches to find complex bugs in modern software.

Chapter 3: Predictive Context-sensitive Fuzzing. Modern fuzzers use classic
code coverage as exploration feedback. This can lead them to overlook interesting
program states when also how the execution reaches a program location matters.
While context-sensitive coverage tracking is a promising solution, it incurs in an
inherent state explosion problem. We show that a much more effective approach
to context-sensitive fuzzing, which we term predictive, is possible, where we select
program regions where we predict is worth to add context sensitivity. We focus
context sensitivity on regions with high dataflow diversity. We show how our
approach largely outperforms state-of-the-art coverage-guided fuzzing embodiments,
unveiling more and different bugs without incurring explosion or other internal

1.2 Contributions 5

wastage. Using our approach, we found 18 security issues in 11 OSS-Fuzz subjects,
with 11 CVE identifiers issued.
The results of this work are presented in:

e P. Borrello, A. Fioraldi, D.C. D’Elia, D. Balzarotti, L. Querzoni, C. Giuffrida.
“Predictive Context-sensitive Fuzzing”. In the Network and Distributed System
Security Symposium (NDSS), 2024.

While fuzzing is highly effective to find bugs resulting in memory corruption,
subtle bugs that do not result in a corrupted state are easily missed. In Chapter 4,
we focus on finding type-confusion bugs missed by state of the art tools.

Chapter 4: Uncovering Container Confusion Bugs in the Linux Kernel.
Type confusion bugs are a common source of security problems whenever software
makes use of type hierarchies. Where existing research mostly studies type confusion
in the context of object-oriented languages such as C++, we analyze how similar
bugs affect complex C projects such as the Linuz kernel, where structure embedding
emulates type inheritance between typed structures. We take a systematic approach
to discover type confusion vulnerabilities resulting from incorrect downcasting on
structure embeddings, which we call container confusion. We design a novel sanitizer
to detect such issues at runtime and evaluate it on the Linux kernel. Using the
patterns in the bugs detected by the sanitizer, we then develop a static analyzer
to find container confusion bugs in code that dynamic analysis fails to reach. We
use our framework, UNCONTAINED, to find 89 container confusion bugs in the Linux
kernel and submit patches to fix all of them. At the time of writing 94 of our patches
have been merged.
The results of this work are presented in:

e J. Koschel*, P. Borrello*, D.C. D’Elia, H. Bos, C. Giuffrida. “UNCONTAINED:
Uncovering Container Confusion in the Linux Kernel”. In the USENIX Security
Symposium, 2023.

* Equal contribution joint first authors.

While the absence of software vulnerabilities deems most software as secure,
particularly security-sensitive software, like cryptographic one, needs stronger guaran-
tees. The absence of implementation bugs, may still hide side channel vulnerabilities,
where attackers are able to exfiltrate sensitive data.

Chapter 5: Automatic Side-Channel Resistance. In the era of microarchitec-
tural side channels, vendors scramble to deploy mitigations for transient execution
attacks, but leave traditional side-channel attacks against sensitive software (e.g.,
crypto programs) to be fixed by developers by means of constant-time program-
ming (i.e., absence of secret-dependent code/data patterns). Unfortunately, writing
constant-time code by hand is hard, as evidenced by the many flaws discovered in
production side channel-resistant code, and existing automated solutions offer limited
security or compatibility guarantees. We present CONSTANTINE, a compiler-based
system to automatically harden programs against microarchitectural side channels.
CONSTANTINE pursues a radical design point where secret-dependent control and

1.2 Contributions 6

data flows are completely linearized. This strategy provides strong security and
compatibility guarantees by construction. To address state explosion challenges in
real-world programs, CONSTANTINE relies on carefully designed optimizations that
lead to an efficient and compatible solution. CONSTANTINE yields overheads as low
as 16% on standard benchmarks and can handle a fully-fledged component from the
production wolfSSL library.

The results of this work are presented in:

e P. Borrello, D. C. D’Elia, L. Querzoni, and C. Giuffrida. “Constantine: Auto-
matic side-channel resistance using efficient control and data flow linearization.”.
In the ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2021.

While software mitigations can address some microarchitectural vulnerabilities
that cause side-channels, CPU vulnerabilities undermine the security guarantees
provided by software- and hardware-security improvements.

Chapter 6: Architectural CPU Vulnerabilities. The discovery of transient-
execution attacks increased the interest in CPU vulnerabilities on a microarchitectural
level, however, architectural CPU vulnerabilities are still understudied. We sys-
tematically analyze existing CPU vulnerabilities showing that CPUs suffer from
vulnerabilities whose root causes match with those in complex software. We show
that transient-execution attacks and architectural vulnerabilities often arise from
the same type of bug and identify the blank spots. Investigating the blank spots, we
focus on architecturally improperly initialized data locations. We discover APIC
Leak, the first architectural CPU bug that leaks stale data from the microarchitecture
without using a side channel. APIC Leak works on all recent Sunny-Cove-based
Intel CPUs (i.e., Ice Lake and Alder Lake), not requiring hyperthreading or any
side-channel. It architecturally leaks stale data incorrectly returned by reading un-
defined APIC-register ranges. We present two new techniques, Cache Line Freezing
and Enclave Shaking, to leak specific data from the cache hierarchy. We present
end-to-end attacks which extract AES-NI and RSA keys, and even the Intel SGX
attestation keys from enclaves within a few seconds.
The results of this work are presented in:

e P. Borrello, A. Kogler, M. Schwarzl, M. Lipp, D. Gruss, and M. Schwarz. APIC
Leak: Architecturally Leaking Uninitialized Data from the Microarchitecture.
In the USENIX Security Symposium, 2022.

e P. Borrello, A. Kogler. APIC Leak: Architecturally Leaking Uninitialized
Data from the Microarchitecture. In BlackHat USA, 2022.

This line of research was awarded the 2022 Pwnie Award for Best Desktop Bug.
We thus show how the black box nature of existing CPUs may hide vulnerabilities
that destroy guarantees provided to all the abstractions that rely on them.

Chapter 7: Reverse Engineering and Customization of Intel Microcode.
CPU microcode provides an abstraction layer over the instruction set to decompose

1.2 Contributions 7

complex instructions into simpler micro-operations that can be more easily imple-
mented in hardware. The microcode details are confidential to the manufacturers,
preventing independent auditing or customization of the microcode. Moreover,
microcode patches are signed and encrypted to prevent unauthorized patching and
reverse engineering. We present the first framework for static and dynamic analysis of
Intel microcode. We reverse-engineer Goldmont microcode semantics and reconstruct
the patching primitives for microcode customization. We implement a Ghidra pro-
cessor module for decompilation and analysis of decrypted microcode, and create a
UEFT application that can trace and patch microcode to provide complete microcode
control on Goldmont systems. Leveraging our framework, we reverse-engineer the
confidential Intel microcode update algorithm and perform the first security analysis
of its design and implementation. In three further case studies, we illustrate the
potential security and performance benefits of microcode customization. We provide
the first x86 Pointer Authentication Code (PAC) microcode implementation and its
security evaluation, design and implement fast software breakpoints that are more
than 1000x faster than standard breakpoints, and present constant-time microcode
division, illustrating the potential security and performance benefits of microcode
customization.
The results of this work are presented in:

e P. Borrello, M. Schwarzl. “CustomProcessingUnit: Tracing and Patching Intel
Atom Microcode”. BlackHat USA, 2022.

e P. Borrello, C. Easdon, M. Schwarzl, R. Czerny, M. Schwarz. “CustomPro-
cessingUnit: Reverse Engineering and Customization of Intel Microcode”.
IEEE Workshop on Offensive Technologies (WOOT), 2023.

e P. Borrello. “CustomProcessingUnit: Reverse Engineering and Customization
of Intel Microcode”. OffensiveCon, 2023.

This line of research was awarded the 2022 Pwnie Award for Most Innovative
Research.

To foster future research, we release all our contributions as open source.

While this thesis is based on the six papers presented above, Appendix A reports
the complete list of scientific publications the author was involved in, both as main
author and non-main author, at the time of writing.

Figure 1.1 provides a pictorial representation of the relationships between the
different contributions in this thesis. On the x-axis, we measure the attacker’s
capability we assume in the corresponding work, from only being able to interact
externally with the application, to (unprivileged) local code execution, up to privi-
leged code execution on the machine. On the y-axis, we capture the abstraction that
is the target of the attack, from the software to the hardware. Our work starts at
the application level, and ends up beyond the CPU abstraction, by targeting CPU
microcode.

In Appendix B, we report in Table B.1 the list of open-source software developed,
and in Table B.2 the list of vulnerabilities we responsibly disclosed to the vendors
while working on the main contributions of this thesis.

1.2 Contributions

Target
Abstraction
A
CustomProcessingUnit
(Chapter 7)
CPU —— EPIC
(Chapter 6)
CONSTANTINE
(Chapter 5)
Operating
UNCONTAINED
System (Chapter 4)
Application
- T Predictive
Level i .
raindrop Context-sensitive
(Chapter 2) Fuzzing
(Chapter 3)
| | | - Attacker
Ll
I I I Capabilities
External Unprivileged Code Privileged Code
Interaction Execution Execution

Figure 1.1. Relationship between the different contributions.

Chapter 2

Prevent Reverse Engineering
Attacks Using Code Reuse

2.1 Introduction

Memory errors are historically among the most abused software vulnerabilities for
arbitrary code execution exploits [365]. Since the introduction of system defenses
against code injection attempts, code reuse techniques earned the spotlight for their
ability in reassembling existing code fragments of a program to build the execution
sequence an attacker desires.

Return-oriented programming (ROP) [323] is the most eminent code reuse tech-
nique. Thanks to its rich expressivity, ROP has also seen several uses besides
exploitation. Researchers have used it constructively, for instance, in code integrity
verification [11], or maliciously to embed hidden functionality in code that undergoes
auditing [47,379]. Security firms have reported cases of malware in the wild written
in ROP [133].

Some literature considers ROP code bothersome to analyze: humans may struggle
with the exoticism of the representation, and the vast majority of tools used for code
understanding and reverse engineering have no provisions for code reuse payloads [39,
95,148,392]. Automatic proposals for analyzing complex ROP code started to emerge
only recently [95,148,392].

We believe that the quirks of the ROP paradigm offer promising opportunities
to realize effective code obfuscation schemes. In this chapter we present a protection
mechanism that builds on ROP to hide implementation details of a program from
motivated attackers that can resort to a plethora of automated code analyses. We
analyze what qualities make ROP appealing for obfuscation, and address its weak
links to make it robust in the face of an adversary that can symbiotically combine
general and ROP-aware code analysis methods.

Motivation

From a code analysis perspective, we observe that the control flow of a ROP
sequence is naturally destructured. Each ROP gadget ends with a ret instruction
that operates like a dispatcher in a language interpreter: ret reads from the top

2.1 Introduction 10

of the stack the address of the next gadget and transfers control to it. The stack
pointer RSP becomes a virtual program counter for the execution, sidelining the
standard instruction pointer RIP, while gadget addresses become the instructions
supported by this custom language.

This level of indirection makes the identification of basic blocks and of control
transfers between them not immediate. This challenges humans and classic disassem-
bly and decompilation approaches, but may not be an issue for dynamic deobfuscation
approaches that explore the program state space systematically (e.g., symbolic ex-
ecution [26]) or try to extricate the original control flow from the dispatching logic
(e.g., [392]), nor for ROP-aware analyses that dissect RSP and RIP changes. Protect-
ing transfers is critical for program obfuscations to withstand advanced deobfuscation
methods, and we introduce three ROP transformations that address this weak link.

Another benefit from using ROP for obfuscation is the code diversity [226] it
can bring. Obfuscations may randomize the instructions emitted at specific points,
but can incur a limited transformation space [29]. We can use multiple equivalent
gadgets in the encoding to serve one same purpose in different program points. But
one gadget can also serve different purposes in different points: the instructions
in it that concur to the program semantics will depend on the surrounding chain
portion, while the others are dynamically dead. This not only complicates manual
analysis, but helps also against pattern attacks that may try to recognize specific
gadget sequences to deem the location of ROP branches and blocks in the chain.

Such attacks often complement an attacker’s toolbox [278]: for instance, an
adversary may heuristically look for distinctive instructions in memory and try to
patch away parts that hinder semantic attacks. We identify a distinctive benefit of
ROP: the adversary only sees bytes that form gadget addresses or data operands,
and because of indirection needs to dereference addresses to retrieve the actual
instructions. With a careful encoding we can induce gadget confusion that makes it
harder also to locate the position of gadget addresses in the chain.

Contributions

We bring novel ideas to the software protection realm, presenting a protection
mechanism that significantly slows down or deters current automated deobfuscation
attacks. We show how to transform entire program functions into ROP chains
that interact seamlessly with standard code components, introducing novel natural
encoding transformations that raise the bar for general classes of attacks. We
evaluate our techniques over synthetic functions for two common deobfuscation
tasks, putting the computational effort for succeeding into perspective with different
configurations of the prominent virtualization obfuscation [29]. We also analyze their
slowdowns on performance-sensitive code, and their coverage on a heterogeneous
real-world code base. In summary, over the next sections we present:

e a rewriter that turns compiled functions into ROP chains;

o an analysis of ROP in the face of three attack surfaces for general deobufscation,
and three encoding predicates that increase the resistance against such attacks;

e a resistance study for secret finding and code coverage goals with symbolic,
taint-driven, and ROP-aware tools;

2.2 Background 11

« a coverage study where we transform 95.1% of the unique functions composing
the coreutils Linux suite.

In the hope of fostering further work in program protection, we make our system
available to researchers. Details for access can be found at https://github.com/p
ietroborrello/raindrop/.

2.2 Background

This section details key concepts from code obfuscation and ROP research that are
relevant to the ideas behind this chapter.

2.2.1 Code Obfuscation

Software obfuscation protects digital assets [342] from malicious entities that some
literature identifies as MATE (man-at-the-end) attackers [29]. Before a research
community was even born, in the '80s these entities challenged and subverted
anti-piracy schemes from vendors, and shielded their own malware.

Today it represents an active research area, with heterogeneous protection
mechanisms challenged by increasingly powerful program analyses [310]. Data trans-
formations alter the position and representation of values and variables, while code
transformations affect the selection, orchestration, and arrangement of instructions.
Our focus are code transformations that prevent an adversary from understanding
the program logic.

The interpretation capabilities of an attacker can be syntactic, semantic, or both.
This distinction makes a great impact: for instance, instruction substitution or the
insertion of spurious computations get in the way of syntax-driven attacks, but
may hardly affect a semantic interpretation as we discuss in Section 2.3. When
facing mixed capabilities, the most resilient protection schemes are often heavy-duty
transformations that deeply affect the control flow and instructions of a program.

Such transformations commonly operate at the granularity of individual func-
tions [29]. Control-flow flattening [71,376] collapses all the basic blocks of the
control-flow graph (CFQG) into a single layer, introducing a dispatcher block that
picks the next block to execute based on an augmented program state. After the suc-
cessful deobfuscation attack of [355], present variants try to complicate the analysis
of the dispatcher [198].

Virtualization obfuscation [29] completely removes the original layout and instruc-
tions: it transforms code into instructions for a randomly generated architecture and
synthesizes an interpreter for it [204]. The instructions form a bytecode representa-
tion in memory, and the interpreter maintains a virtual program counter over it: it
reads each instruction and dispatches an opcode handler function that achieves the de-
sired semantics for it. As its working resembles a virtual machine, the transformation
is also known as VM obfuscation. This technique has lately monopolized the agenda
of much deobfuscation research in security conferences (e.g., [39,80,309,325,391]).
VM obfuscation tools have three main strengths: complex code used in opcode
handlers to conceal their semantics, obfuscated virtual program counter updates,

https://github.com/pietroborrello/raindrop/
https://github.com/pietroborrello/raindrop/

2.2 Background

12

Rpy=Ra?2:1 i
if-then: pop rex; ret and rsi, rcx; ret
INE
test rax, rax o0 add rsp, rsi; ret '
jne else]
mov rdi, Ox1 neg rax; ret 8 pop rdi; ret |
i B
jmp next adc rex, rex; ret > ox1 E
else:] | mp
mov rdi, 0x2 neg rex; ret < pop rsi; pop rbp; ret f
next: R i
pop rsi; ret pop rdi; ret =
0x18 0x2
i (continues) next

Figure 2.1. ROP chain with non-linear control flow. For readability pointed-to instructions
appear in place of gadget addresses.

and scarce reuse of deobfuscation knowledge as the instruction set and the code for
opcode handlers are generated randomly for each program.

Best practices often use data transformations at strategic points (e.g., VM
dispatcher) in the implementation of a code transformation. The most common in-
stance are opaque predicates [77]: expressions whose outcome is independent of their
constituents, but hard to determine statically for an attacker. Opaque predicates
can build around mathematical formulas and conjectures, mixed boolean-arithmetic
(MBA) expressions, and instances of other hard problems like aliasing [300].

2.2.2 Return-Oriented Programming

ROP is a technique to encode arbitrary behavior in a program by borrowing and
rearranging code fragments, also called gadgets, that are already in the program [323].
Each gadget delivers a piece of the desired computation and terminates with a ret
instruction, which gives the name to the technique. A ROP payload comprises a
sequence of gadget addresses interleaved with immediate data operands. The key to
ignition is a pivoting sequence that hijacks the stack pointer, so that on a function
return event the CPU fetches the instructions from the first gadget. Each gadget
eventually transfers execution to the next using its own ret instruction, realizing a
ROP chain.

Figure 2.1 features a chain that assigns register RDI with 1 when register
RAX==0, and with 2 otherwise. The example showcases exoticisms of the repre-
sentation with branch encoding and path-dependent semantics of chain items. The
first gadget writes the immediate value 0x0 to RCX, and RSP advances by 0x10
bytes for its pop and ret instructions. The next two gadgets check if RAX is zero
with neg rax: the carry flag becomes 0 when RAX==0 and 1 otherwise, then an
addition with carry writes this quantity into RCX.

ROP control-flow branches are variable RSP addends computed over a leaked
CPU condition flag. The chain determines whether to skip over the 0x18 byte-long
portion that sets RDI to 1: it computes in RSI an addend that is equal to 0 when
RAX==0, and to 0x18 otherwise, using a two’s complement and a bitwise AND on
RCX. If the branch is taken, RSP reaches a pop rdi gadget that reads and assigns
2 to RDI as desired. When execution falls through, a similar sequence sets RDI to
1, then unconditionally jumps over the alternative assignment sequence: this time
we find no RSP addition, but a gadget disposes of the alternative 0210 byte-long

2.3 Adversarial Model 13

segment by popping two junk immediates to RSI and RBP.

Attackers can find Turing-complete sets of gadgets in mainstream software [313,
323]. While a few works address automatic generation of ROP payloads [313],
publicly available tools often produce incomplete chains in real-world scenarios [14]
or do not support branches. Reasons for this failure are side effects from undesired
code in found gadgets, register conflicts during chaining [14], and unavailability of
“straightforward” gadgets for some tasks [307]. Albeit improved tools continue to
appear (e.g., [374]), no general solution for automatic ROP code generation seems
available to date.

ROP is the most popular but not the sole realization of code reuse: jmp-ended
gadgets (JOP) [41], counterfeit C++ objects (COOP) [312], and other elements can
be abused as well. But most importantly, ROP today is no longer only a popular
mean to get around and disable code injection defenses.

Researchers and threat actors used its expressivity to create userland [133],
kernel [169,371], and enclave [316] malware, and to fool antivirus engines [47,276]
and application review [379]. The sophistication of these payloads went in some
cases beyond what a human analyst can manually investigate [148], and researchers
in the meantime explored automated approaches to untangle ROP chains: we discuss
these works in detail in Section 2.3.

2.3 Adversarial Model

This chapter considers a motivated and experienced attacker that can examine a
program both statically and dynamically. The attacker is aware of the design of the
used obfuscation, but not of the obfuscation-time choices made when instantiating
the approach over a specific program to be protected (e.g. at which program locations
we applied some transformation).

While the ultimate end goal of a reverse engineering attempt can be disparate,
we follow prior deobfuscation literature (e.g., [27,28,278]) in considering two deob-
fuscation goals that are sufficiently generic and analytically measurable:

G; Secret finding. The program performs a complex computation on the input,
such as a license key validation, and the attacker wishes to guess the correct
value;

G, Code coverage. The attacker exercises enough (obfuscated) paths to cover
all reachable (original) program code, e.g. to later analyze execution traces.

The attacker has access to state-of-the-art systems suitable for automated deob-
fuscation and can attempt to symbiotically combine them, using one to ease another.
In the following we describe the most powerful and promising approaches available
to attackers, and enucleate three attack surfaces for general deobfuscation. Those
will drive our ROP encoding techniques to build chains that may withstand such
attacks.

2.3.1 Principles behind Automated Deobfuscation

Banescu et al. [28] identify a common pre-requisite in automated attacks perpetrated
by reverse engineers: the need for building a suite of inputs that exercise the different

2.3 Adversarial Model 14

paths a protected program can actually take. Achieving a coverage as high as 100%
represents Gp for our attacker, while for G; depending on the specific function fewer
paths may suffice but also data dependencies should be solved. Slowing down the
generation of a “test suite” for the attacker is a first cut of the effectiveness of
an obfuscation [28], as it is a key step in most deobfuscation pipelines for utterly
disparate end goals.

By analyzing deobfuscation research, we abstract three general attack surfaces
that a “good” obfuscation shall consider:

A; Disassembly. It should not be immediate for an attacker to discover code
portions using static analysis techniques;

A, Brute-force search. Syntactic code manipulations such as tracking and “in-
verting” the direction of control transfers should not reveal new code, but
further dependencies must be solved in order to take valid alternate paths;

A3 State space. When an obfuscation makes provisions to artificially extend the
program state space to be explored, analyses based on forward and backward
dependencies of program variables should fail to simplify them away.

In the next section we present eminent approaches for such automated attacks,
which we then consider in Section 2.7 to evaluate our ROP obfuscation. How to
transform an existing program function into a ROP chain and make it robust against
these three attack types are the subject of Section 2.4 and Section 2.5, respectively.

2.3.2 State-of-the-art Deobfuscation Solutions
2.3.2.1 General Techniques

Deobfuscation attacks can draw from static and dynamic program analyses. Several
static techniques are capable of reasoning about run-time properties of the program,
and may be the only avenue when the attacker cannot readily bring execution to a
protected program portion or control its inputs. In this context, symbolic execution
(SE) reveals the multiple paths a piece of code may take by making it read symbolic
instead of concrete input values, and by collecting and reasoning on path constraints
over the symbols at every encountered branch. Upon termination of each path, an
SMT solver generates a concrete input to exercise it [26].

Scalability issues often cripple static approaches, and dynamic solutions may try
to get around them by leveraging facts observed in a concrete execution. Dynamic
symbolic execution (DSE) interleaves concrete and symbolic execution, collecting
constraints at branch decisions that are now determined by the concrete input
values, and generates new inputs by negating the constraints collected for branching
decisions.

Obfuscators can however induce constraints that are hard for a solver, or expand
the program state space artificially. Building on the intuition that these transfor-
mations are not part of the original program semantics, taint-driven simplification
(TDS) tracks explicit and implicit flows of values from inputs to program outputs,
untangling the control flow of an obfuscation method apart from that of the original
program [392]. TDS is a general, dynamic, and semantics-based technique: it applies

2.4 Program Encoding with ROP 15

a selection of semantics-preserving simplifications to a recorded trace and produces
a simplified CFG. TDS can operate symbiotically with DSE to uncover new code by
feeding DSE with the simplified trace: in [392] this symbiosis turned out effective
in cases that DSE alone could not handle. TDS succeeded on code protected by
state-of-the-art VM obfuscators, as well as on four hand-written ROP programs.

We consider SE, DSE, and TDS as they represent powerful tools available to
adversaries, and embody concepts seen also in attacks against specific obfuscations
(e.g., [390]). Prior literature [27,28,278] uses SE and DSE to evaluate and compare
obfuscation techniques on goals akin to G; and Gy, as both approaches are powerful
and driven only by the semantics of the code (i.e., syntactic changes have little
effect).

2.3.2.2 ROP-Aware Techniques

Expressing programs as ROP payloads affects analysis techniques that account for
the syntactic representation of code. For instance, even commercial disassemblers
and decompilers are not equipped to deal with this exotic representation and would
fail to produce meaningful outputs for ROP chains [267]. Currently researchers have
come up with two solutions to handle complex ROP code.

ROPMEMU [148] attempts dynamic multi-path exploration by looking for
sequences that leak condition flags from the CPU status register, as they may
take part in branching sequences (Section 2.2.2): it flips their value and tries to
generate alternate execution traces that explore new code. ROPMEMU is not the
sole embodiment of this technique, seen in, e.g., crash-free binary exploration [290]
and malware unpacking [356] research for RIP-driven code. ROPMEMU eventually
removes the ROP dispatching logic (i.e., the ret sequences) and performs further
simplifications, reconstructing a CFG representation.

ROPDissector [95] addresses shortcoming of ROPMEMU in branch identification,
with a data-flow analysis for identifying sequences that build variable RSP offsets, so
to flip all and only the operations taking part in the process. ROPDissector builds a
ROP CFG highlighting branching points and basic blocks in a chain, and operates as
a static technique as it does not require a valid execution context as starting point.

In our evaluation we will consider a combination of the two approaches, specu-
lating on extensions tailored to our design.

2.4 Program Encoding with ROP

We design a binary rewriter for protecting compiled programs: the user specifies
one or more functions of interest that the rewriter encodes as self-contained ROP
chains stored in a data section of the binary. Our implementation supports compiler-
generated, possibly stripped x64 Linux binaries. To ensure compatibility between
ROP chains and non-ROP code modules, we intercept and preserve stack manipula-
tions and use a separate stack for the chain. This section details the design of the
rewriter (Figure 2.2), how it encodes generic functions as self-contained chains, and
its present limitations.

2.4 Program Encoding with ROP 16

CFG | ROP Encoder
Reconstruction

| Translation |
Binary i Liveness [Obfuscated
Program Analysis | Chain Crafting | Program
INPUT deet OUTPUT

> G'a 8¢ | Materialization |

Finder

Figure 2.2. Architecture of the ROP rewriter.

2.4.1 Geometry of a ROP Encoder
2.4.1.1 Gadget Sources

The first decision to face in the design of a ROP encoder is where to find gadgets.
These may be found in statically and dynamically linked libraries, in program parts
left unobfuscated, or in custom code added to the program. We ruled out static
libraries as a binary might not have any, and dynamic ones to avoid dependencies
on specific library versions that must be present in any target system.

Exploitation research suggests that program code as small as 20-100KB may
already contain minimal gadget sets for attacks [313]. Our scenario however is ideal:
the possibility of controlling and altering the binary grants us more wiggle room
compared to attack scenarios, as we can add missing gadgets—and most importantly
create diversified alternatives—as dead code in the .text section of the program.
We thus pick gadgets from a pool of artificial gadgets combined with gadgets already
available in program parts left unobfuscated.

2.4.1.2 Rewriting

The second decision concerns deploying the encoder as a binary rewriter (as we do)
or a compiler pass. Binary rewriting can handle a larger pool of programs, including
proprietary software and programs with a custom compilation toolchain, and builds
on analyses that extract facts necessary to assist the rewriting. A compiler pass
has some such analyses (e.g., liveness) already available during compilation, and
possibly more control over code shape. However, in order to be able to rewrite an
entire function, we believe a pass may have to operate as last step (modifying or
directly emitting machine instructions) and/or constrain or rewrite several pieces of
upper passes (e.g., instruction selection, register allocation). This would lead to a
pass that is platform-dependent and that faces similar challenges to a rewriter while
being less general.

2.4.1.3 Control Transfers and Stack Layout

Obfuscated functions get expressed in ROP, but may need to interact with surround-
ing components, calling (or being called by) non-ROP program/library functions
or other ROP functions. In this respect native code makes assumptions on the stack
layout of the functions, e.g., when writing return addresses or referencing stack
objects in the scope of a function and its callees.

2.4 Program Encoding with ROP 17

Reassembleable disassembling literature [32,103,378,388] describes known hurdles
when trying to turn hard-coded stack references into symbols that can be moved
around. In our design we instead preserve the original stack behavior of the program:
we place the chain in a separate region, and rewrite RSP dereferences and value
updates to use a other_rsp value that mimics how the original code would see RSP
(Figure 2.3).

This choice ensures a great deal of compatibility, and avoids that calls to native
functions may overwrite parts of the ROP chain when executing. We keep other_rsp
in a stack-switching array ss that ensures smooth transitions between the ROP and
native domains and supports multiple concurrently active calls to ROP functions,
including (mutual) recursion and interleavings with native calls.

We store the number of active ROP function instances in the first cell of the
array, making the last one accessible as *(ss+*ss). When upon a call we need to
switch to the native domain, we use other_rsp to store the resumption point for
the ROP call site, and move its old value in RSP so to switch stacks. Upon function
return, a special gadget switches RSP and other_rsp again (Figure 2.4).

2.4.1.4 Chain Embedding

Upon generation of a ROP chain, we replace the original function body in the
program with a stub that switches the stack and activates the chain. We opt for
chains without destructive side effects, avoiding to have to restore fresh copies across
subsequent invocations. We place the generated chains at the end of the executable’s
.data section or in a dedicated one.

2.4.2 Translation, Chain Crafting, and Materialization

This section describes the rewriting pipeline we use in the ROP encoder of Figure 2.2.
Although we operate on compiled code, the pipeline mirrors typical steps of compiler
architectures [4]: we use a number of support analyses (yellow and grey boxes) and
translate the original instructions to a simple custom representation made of roplets,
which we process in the chain crafting stage by selecting suitable gadgets for their
lowering and then allocating registers and other operands. A final materialization
step instantiates symbolic offsets in the chain and embeds the output raw bytes in
the binary.

2.4.2.1 Translation

The unit of transformation is the function. We identify code blocks and branches
in it using off-the-shelf disassemblers (CFG reconstruction element of Figure 2.2):
Ghidra [275] worked flawlessly in our tests when analyzing indirect branches, and
we support angr [329] and radare2 [7] as alternatives. We then translate one basic
block at a time, turning its instructions into a sequence of roplets.

A roplet is a basic operation of one of the following kinds:

e intra-procedural transfer, for direct branches and for indirect branches coming
from switch tables (Appendix C);

2.4 Program Encoding with ROP 18

o inter-procedural transfer, for calls to non-ROP and ROP functions (including
jmp-optimized tail recursion cases);

e epilogue, for handling instructions like ret and leave;

o direct stack access, when dereferencing and updating RSP with dedicated read
or write primitives (e.g., push, pop);

o stack pointer reference, when the original program reads the RSP value as
source or destination operand in an instruction, or alters it by, e.g., adding a
quantity to it;

e instruction pointer reference, to handle RIP-relative addressing typical of
accesses to global storage in .data;

e data movement, for mov-like data transfers that do not fall in any of the three
cases above;

e ALU, for arithmetic and logic operations.

One roplet is usually sufficient to describe the majority of program instructions.
In some cases we break them down in multiple operations: for instance, for a mov
gword [rsp+8], rax we generate a stack pointer reference and a data movement
roplet. To ease the later register allocation step, we annotate each roplet with the
list of live registers! found for the original instruction via liveness analysis.

At this stage we parametrically rewire every stack-related operation to use
other_rsp, and transform RIP-relative addressing instances in absolute references
to global storage.

2.4.2.2 Chain Crafting

When the representation enters the chain crafting stage, we lower the roplets in
each basic block by drawing from suitable gadgets for each roplet type (using the
gadget finder element of Figure 2.2). For instance, to translate a conditional (left)
or unconditional (right) intra-procedural transfer we combine gadgets to achieve:

pop {regi} ## L
mov {reg2}, 0x0
cmov{ncc} {regl}, {reg2} pop {regi} ## L
add rsp, {regl} add rsp, {regl}

where a gadget may cover one or more consecutive lines (so we omit ret above).
In both codes the pop gadget will read from the stack an operand L (placed as an
immediate between the addresses of the first and second gadget) that represents the
offset of the destination block. L is a symbol that we materialize once the layout of
the chain is finalized, similarly to what a compiler assembler does with labels.

Following the analogy, when choosing gadgets for roplets we operate as when in
the instruction selection stage of a compiler [4], with {regX} representing a virtual

LA backward analysis deems a register live if the function may later read it before writing to it,
ending, or making a call that may clobber it [97,295].

2.4 Program Encoding with ROP 19

ss + size
[v
ss —>‘ size | | | | other_rsp ‘
size <« %SS
rsp—~| gadgets {varl — wn(sstsize)] varl
ret address
ROP chain native stack

Figure 2.3. Reading a stack variable from top of native stack.

register, roplets the middle-level representation, and gadgets the low-level one. When
it comes to instruction scheduling, we follow the order of the original instructions in
the block.

Native function calls see a special treatment, as we have to switch stacks and
set up the return address in a way to make another switch and resume the chain
(Section 2.4.1). For the call we combine gadgets as in the following:

pop {regl} ## ss

add {regl}, qword ptr [{regll}] ## step A ends

sub qword ptr [{regl}], 0x8

mov {reg2}, qword ptr [{regll}]

pop {reg3} ## addr. of return gadget

mov qword ptr [{reg2}], {reg3} ## step B ends

pop {reg2} ## function address

xchg rsp, qword ptr [{regll}]; jmp {reg2} ## step C

where we pop from the stack the addresses of: the stack-switching array, a
function-return gadget, and the function to call. Gadgets may cover one or more
consecutive lines, except for the last one which describes an independent single JOP
gadget (Section 2.2.2): xchg and jmp switch stacks and jump into the native function
at once. Figure 2.4 shows the effects of the three main steps carried by the sequence.

The called native function sees as return address (top entry of its stack frame)
the address of the function-return gadget. This is a synthetic gadget with a statically
hard-wired ss address that reads the RSP value saved by the xchg at call time and
swaps stacks again:

mov {regl}, ss; add {regl}, qword ptr [{regl}];
xchg rsp, qword ptr [{regl}]; ret

For space limitations we omit details on the lowering of other roplet types: their
handling becomes ordinary once we translated RSP and RIP-related manipulations
(Section 2.4.2.1).

Register allocation is the next main step: we choose among candidates available
for a desired gadget operation by taking into account the registers they operate on
and those originally used in the program, trying to preserve the original choices
whenever possible. When we find conflicts that may clobber a register, we use scratch
registers when available (i.e., non-live ones) or spill it to an inlined 8-byte chain

2.4 Program Encoding with ROP 20

ss + size
[v
ss—-‘ size ‘ ‘ ‘ .. ‘ other_rsp ‘
; initially
after@ I after@
initiall after
p— Y, ® rsp —@>> func-ret gadget (<
after
rop 2t ®
after caller frame
sp———=— © (ROP func.) vELD
l« ret address
ROP chain native stack

recover native rsp push addr of swap (rsp, other_rsp)
@ from other_rsp func—ret gadget © & jump to native func

Figure 2.4. Call to a native function from ROP code.

slot as a fallback. We then ensure a reconciliation of register bindings [243] at the
granularity of basic blocks: when execution leaves a block, the CPU register contents
reflect the expected locations for program values that are live in the remainder of
the function.

Another relevant detail is to preserve the status register if the program may read
it later. While most instructions alter CPU flags, our liveness analysis points out the
sole statements that may concur to a later read: whenever in between we introduce
gadgets that pollute the flags?, we spill and later restore them.

2.4.2.3 Materialization

At the end of the crafting stage a chain is almost readily executable. As its branching
labels are still symbolic, we may optionally rearrange basic blocks: then once we fix
the layout the labels become concrete RSP-relative displacements. We then embed
the chain in the binary, allocating space for it in a data section and replacing the
original function code with a pivoting sequence to the ROP chain. The sequence
extends the stack-switching array and saves the native RSP value, then the chain
upon termination executes a symmetric unpivoting scheme (details in Appendix C).

2.4.3 Discussion

Our design makes limited assumptions on the input code: it hinges on off-the-shelf
binary analyses to identify intra-procedural branch targets, and obliviously translates
stack accesses and dereferences to preserve execution correctness when interacting
with the surrounding software stack.

Our implementation could rewrite a large deal of real-world programs (Sec-
tion 2.7.3.1), even when we supplied it code already protected by the control-flow
flattening and/or (nested) VM obfuscations of the Tigress framework [76]. We
experimentally observed (Section 2.7.3.1) that the analyses of Ghidra are remarkably
effective in recovering intra-procedural indirect branch targets, which in several
high-level languages derive from optimized switch constructs. Whenever those may
fail, one could couple the rewriter with a dynamic tracer for recovering the intended
targets by running the original program using expected inputs. Transfers to other

2.5 Strengthening ROP Programs 21

functions via indirect calls or tail jumps are instead straightforward, as the chain
transfers control to the prologue of the callee as it happens with direct calls.

A limitation of the design, shared with static rewriting and instrumentation
schemes [94,103], is lastly the inability to handle self-modifying and dynamically
generated code.

As for register conflicts, the high number of x64 registers give us wiggle room to
perform register renaming within blocks with modest spilling. An area larger than
the 1-word one we use may help with code with very high register pressure cases
(Section 2.7.3) or 32-bit implementations; instruction reordering and function-wide
register renaming may also help.

The implementation incurs two main limitations that one can address with
moderate effort. The spilling slots and the ss array area are not thread-private, but
we may recur to thread-local storage primitives. Rewritten binaries are compatible
with address space layout randomization for libraries, while the body of the program
is currently loaded at fixed addresses. To ship position-independent executables
we may add relocation information to headers so to have the loader patch gadget
addresses in the chains, or use the online patching for chains from [47] to have the
program itself do the update.

In terms of compatibility with ROP defenses of modern operating systems, our
context is different to an exploitation one where the program stack gets altered and
the choice of gadgets is limited. On Windows, for instance, our stack switching upon
API calls would already comply with the RSP range checks of StackPivot [273]; our
liberty to synthesize gadgets would be decisive against CallerCheck, which checks if
the instruction preceding an API’s return address is a call [273]. We refer to prior
work [47] for details. A potential issue, which may require the user to whitelist the
program, could be instead coarse-grained defenses that monitor branches [91] or
micro-architectural effects [120]. However, those are yet to become mainstream as
they face robustness and accuracy issues.

Finally, our readers may question if the use of ROP introduces obvious security
risks. An attacker needs a write primitive pointing to a chain in order to alter it. In
our protected programs, ROP-encoded parts use write operations only for spilling
slots, and those cannot go out of bounds. Non-ROP parts never reference chains in
write (or read) operations: an attacker would thus have to search for an arbitrary
memory write primitive in such parts. Its presence, however, would be an important
source of concern even for the original program. Our implementation also supports
the generation of read-only chains, which use a slightly longer spilling machinery.

2.5 Strengthening ROP Programs

In the furrow of prior works (e.g., [39,148,392]) that highlighted the hindrances from
the ROP paradigm to reverse engineering attempts, one could anticipate that the
design of Section 2.4 may challenge manual deobfuscation and code understanding
attempts. The common thread of their observations is that the exoticism of the
representation—ROP defines a weird machine [225]—disturbs humans when com-

2This happens mainly when an intervening instruction involves RSP and we emit gadgets to do
pointer arithmetic for stack pointer reference roplets.

2.5 Strengthening ROP Programs 22

pared to native code. The rewriter makes use of all motivating factors for ROP that
we outlined in Section 2.1, such as destructured control flow and diversity and reuse
of gadgets (including gadget confusion that we describe next).

Quantifying the effectiveness of an obfuscation is however a difficult task, as it
depends not only on the available tools, but also on the knowledge of the human
operating them [28]. A well-established practice in the deobfuscation literature is
to measure the resilience to automated deobfuscation techniques, which in most
attack scenarios are the fulcrum of reverse engineering attempts and ease subsequent
manual inspections [310].

ROP encoding alone is not sufficient for obfuscation. We find control
transfers between basic blocks to be its weak link.

Even when diversifying the used gadget instances, an attacker aware of the
design may follow the ROPMEMU approach (Section 2.3.2) to spot in an execution
trace what gadgets add variable quantities to RSP (thus exposing basic blocks),
untangle ret instructions from the original control flow of the program, and assemble
a dynamic CFG from multiple traces.

Protecting control transfers is equally critical in the face of the most effective
general-purpose semantics-aware techniques like SE, DSE and TDS, which try to
reason on the parts essential for program functionality while sifting out the irrelevant
obfuscation constructs and instructions [28,392], such as side effects and dynamically
dead portions from gadgets.

One way to hinder the automated approaches of Section 2.3.2 would be to target
weaknesses of each technique individually. For instance, researchers proposed hard-
to-solve predicates for SE (e.g. MBA expressions [36], cryptographic functions [324]),
and code transformations that impact concolic variants like DSE too [391]. But an
experienced attacker can symbiotically combine methods to defeat this approach,
for instance using TDS or similar techniques (e.g., program synthesis for MBA
predicates [36]) to feed DSE with tractable traces as in [392].

In this section instead we present three rewrite predicates, naturally meshed with
RSP update actions, that bring protection against generic, increasingly powerful
automated attacks that cover the principled classes Aj».3 from Section 2.3.1. We
then introduce gadget confusion and share some general reflections.

2.5.1 Predicate P;: Anti-ROP-Disassembly

Our first predicate uses an array of opaque values [78] to hide branch targets
(A1). The array contains seemingly random values generated such that a periodic
invariant holds, and backs the extraction of a quantity a that we use to compute
the displacement in the chain for one of the n branches in the code. Suppose we
need to extract a for branch b€ {0..n — 1}: starting with cell b, in every p-th cell
of the array we store a random number ¢ such that ¢=amodm, with m >n and p
chosen at obfuscation time.

110 197 34 | 45 |54 62 | 66 |33 6 | 59 |61] 20 |

Above we encoded information for n=3 branches using p=4 repetitions and m=7.
For the branch with ordinal 1 we wanted to memorize a =5: every cell colored in
dark gray thus contains a value v such that v mod 7 equals 5.

2.5 Strengthening ROP Programs 23

During obfuscation we use a period of size s>n, with a fraction of the cells
containing garbage. We also share a valid cell among multiple branches, so to avoid
encoding unique offsets that may aid reversing. To this end we divide an RSP
branch offset ¢ in a fixed part a encoded in the array and a branch-specific part
0 — a computed by the chain, then we compose them upon branching.

This implies that for static disassembly an attacker should recover the array
representation and mimic the computations made in every chain segment to extract
a and compute the branch-specific part. While this is possible for a semantically
rich static technique like SE, periodicity comes to the rescue as it brings aliasing:
every p-th cell is suitable for extracting a. Our array dereferencing scheme takes the
form of:

a=A[f(z) * s+ n] modm

where f(x) depends on the program state and returns a value between 0 and
p — 1. Its implementation opaquely combines the contents of up to 4 registers that
hold input-derived values. SE will thus explore alternative input configurations that
ultimately lead to the same rsp +=9 update; reducing their number by constraining
the input would lead instead to missing later portions of program state.

Whenever an attacker may attempt a points-to analysis [330] over rsp+=14, we
believe a different index expression based on user-supplied or statically extracted
facts on input value ranges would suffice to complicate such analysis significantly.

2.5.2 Predicate P,: Preventing Brute-Force Search

Our second predicate introduces artificial data dependencies on the control flow,
hindering dynamic approaches for brute-force path exploration (Az) that flip branches
from an execution trace. While these techniques do not help in secret finding (G;) as
they neglect data constraints (Section 2.3.1), they may be effective when the focus
is code coverage (Gy).

P1 is not sufficient against A,: an attacker can record a trace that takes a
conditional branch shielded by P1, analyze it to locate the flags set by the instruction
that steered the program along the branch, flip them, and reveal the other path [95].

Without loss of generality, let us assume that a ¢mp a, b instruction determines
whether the original program should jump to location L when ¢ == b and fall
through otherwise. We introduce a data dependency that breaks the control flow
when brute-force attempts leave its operands untouched. As we translate the branch
in ROP, in the block starting at L we manipulate RSP with, e.g., rsp += x % (a — b),
so that when brute-forcing it without changing the operands, (a — b) != 0 and RSP
flows into unintended code by some offset multiple of x. Similarly, on the fall-through
path we manipulate RSP with, e.g., rsp += x % (1 — notZero(a — b)), where notZero
is a flag-independent computation® so the attacker cannot flip it.

Different formulations of opaque updates are possible. Whenever an attacker
may attempt to learn and override updates locally, we figured a future, more covert
P, variant that encodes offsets for branches using opaque expressions based on value
invariants (obtainable via value set analysis [25]) for some variable that is defined in
an unrelated CFG block.

2.5 Strengthening ROP Programs 24

2.5.3 Predicate P3: State Space Widening

Our third predicate brings a path-oriented protection that artificially extends the
program space to explore and is coupled with data (and optionally control) flows of
the program, so that techniques like TDS (A3) cannot remove it without knowledge
of the obfuscation-time choices. P3 comes in two variants.

The first variant is an adaptation of the FOR predicate from [278]. The idea is
to introduce state forking points using loops, indexed by input bytes, that opaquely
recompute available values that the program may use later. In its simplest formula-
tion, FOR replaces occurrences of an input value char c with uses of a new char
fc instantiated by for (i=0; i<c; ++i) fc++. Such loop introduces 2® artificial
states to explore due to the uncertainty on the value of c.

The work explains that targeting 1-byte input portions brings only a slight per-
formance overhead, and choosing independent variables for multiple FOR instances
optimizes composition for state explosion. It also argues how to make FOR sequences
resilient to pattern attacks, and presents a theorem for robustness against taint anal-
ysis and backward slicing, considered for forward and backward code simplification
attacks, respectively (the TDS technique we use has provisions for both [392]).

While we refer to it for the formal analysis, for our goals suffice it to say that
when the obfuscated variable is input-dependent (for tainting) and is related to the
output (for slicing), such analyses cannot simplify away the transformation.

During the rewriting we use a data-flow analysis to identify which live registers
contain input-derived data (symbolic registers) and may later concur to program
outputs®*. We then introduce value-preserving opaque computations like in the
examples below (the right one is adapted from [278]):

dead_reg = O;
for (i=0; i<(char)sym; ++i)
if (i%2) dead_reg-;
else dead_reg+=3;
if (i%2) dead_reg-=2;
sym = (sym&OxF..F00)+dead_reg;

// clear last byte

dead_reg &= O0xABOO;

for (i=0; i<(char)sym; ++i)
dead_reg++;

sym |= (char)dead_reg;

These patterns significantly slow down SE and DSE engines, but also challenge
approaches that feed tractable simplified traces to DSE. While one may think of
detecting and propagating constant values in the trace, the TDS paper [392] explains
that doing it indiscriminately may oversimplify the program: in our scenario it may
remove FOR but also pieces of the logic of the original program elsewhere. To avoid
oversimplification the TDS authors restrict constant propagation across input-tainted
conditional jumps, which is exactly the case with dead_reg and sym in the examples
above.

The authors suggest, as a general way to hamper semantics-based deobfuscation
approaches like TDS, to deeply entwine the obfuscation code with the original
input-to-output computations. They also state that at the time obfuscation tools
had not explored this avenue, possibly for the difficulties in preserving observable
program behavior [392].

2.5 Strengthening ROP Programs 25

Our second P3 variant is new and moves in this direction. Instead of recomputing
input-derived variables, we use them to perform opaque updates to the array used
by P;. Updates include adding/subtracting quantities multiple of m, swapping
the contents of two related cells from different periods, or combining the contents
of two cells i and j where a= A[ilmodm and b= A[j]modm to update a cell [
where (a + b) = A[l] mod m. For DSE-alike path exploration approaches the effect is
tantamount to the FOR transformation described above. For trace simplification it
introduces implicit flows, with fake control dependencies between program inputs
and branch decisions taken later in the code: TDS cannot simplify them without
explicit knowledge of the invariants.

2.5.4 Gadget Confusion

ROP encoding brings several advantages when implementing P15 3. Firstly, it offers
significant leeway for diversifying the gadget instances we use to instantiate them.
We combine this diversity with dynamically dead instructions: we can use gadgets
whose each instruction either concurs to implementing a predicate or has no effect
depending on the surrounding chain portion. This helps in instantiating many
variants of a pattern, challenging syntactic attacks aware of the design.

However, a unique advantage of ROP, as we observed in Section 2.1, is the level
of indirection that it brings: this complicates pattern attacks that look for specific
instruction bytes, since code is not in plain sight, and attackers need to extract
the instruction sequences as if executing the program. What they see are bytes
belonging to either gadget addresses or data operands. They may, however, attempt
analyses that look for byte sequences resembling addresses from code regions (i.e.,
plausible gadgets) and try to speculatively execute the chain from there [95,294].
By trying it at every plausible point, this may eventually reveal some chain portions,
nonetheless short thanks to P1.5.

This is when gadget confusion enters the picture. Firstly, we can transform data
operands in the chain to look like gadget addresses, having then gadgets recover
the desired values at run time (e.g., subtracting two addresses to obtain a constant,
applying bitmasks, shifting bits, etc.). This is possible as we control both the
layout of the binary (for the addresses) and the pool of artificial gadgets (for the
manipulations). Now that virtually every 8-byte chain stride looks like a gadget
address, we introduce unaligned RSP updates at random program points, adding
a quantity n s.t. nmod8 != 0. In the end, the attacker may have to execute
speculatively at every possible chain offset, obtaining instructions that may or may
not be part of the intended execution sequence. We believe such gadget confusion
makes pattern attacks on our chains even harder.

2.5.5 Further Remarks

The instantiation of Pj 3 is naturally entwined with RSP dispatching: directly
for P12, and indirectly for P3 through array updates. In the rewriter, P; replaces
the RSP update sequence we showed in Section 2.4.2.2, while P> operates on the

3Example: notZero(n) := ~(~n& (n 4+ ~0))>31 for 32-bit data types.
“To this end we use the symbolic execution capabilities of angr [329)].

2.6 Related Work 26

fall-through and target blocks of a branch. Finally, the rewriter can apply either P3
variant to a user-defined fraction k of the original program points when lowering the
associated roplets.

Each predicate targets a main attack surface, but positive externalities are also
present. P, can protect against possible linear/recursive disassembly algorithms for
ROP (A1), but will not withstand SE-based disassembly. In Section 2.7.3 we discuss
how P; can slow down state exploration (A3) by indirectly putting pressure on the
memory model of a SE or DSE engine.

Finally, with the second P3 variant we used ROP control transfer dynamics to
introduce also fake control dependencies.

2.6 Related Work

Prior research explored ROP for software protection goals orthogonal to obfuscation:
tamper checking of selected code regions through chains that use gadgets from such
regions [11], covert watermark encoding [246], and steganography of short code [242].
Each of them could complement our design, especially [11] for checking code integrity
of non-obfuscated parts.

ROPOB [267] is a lightweight obfuscation method to rewrite transfers between
CFG basic blocks using ROP gadgets. It considers standard disassembly algorithms
as adversary (a “lighter” A; case), and does not withstand static attacks like SE (A1)
or ROPDissector (Az), nor dynamic ones like DSE or TDS (A3z). ROPOB leaves data
manipulation instructions in plain sight, whose rewriting poses several challenges
(Section 2.4.2).

VM deobfuscation attacks like Syntia [39] and VMHunt [390] intercept and
simplify (As3) dispatching and opcode handling sequences. They do not apply
directly to ROP chains, and embody flavors of the agnostic and general approach of
TDS.

movfuscator [72] is an extreme instance of the weird machine concept, rewriting
programs using only the Turing-complete mov instruction. Kirsch et al. present [206]
a custom linear-sweep algorithm (A;) that recovers the CFG by targeting logic
dispatching elements used for the very encoding.

2.7 Evaluation

We arrange our experimental analysis in three parts. We first study the efficacy of
our techniques against prominent solutions for Aj 5.3 (Section 2.7.1), confirming the
theoretical expectations. We then study the resource usage of viable deobfuscation
attacks using a methodology adopted in previous works [28,278], and put such
numbers into perspective with VM-obfuscated® counterparts (Section 2.7.2). Finally,
we analyze the applicability of our method to real-world code (Section 2.7.3).

We ran the tests on a Debian 9.2 server with two Xeon E5-4610v2 and 256 GB
of RAM. Appendix Appendix C contains the settings we used to generate our 72
test functions and the VM variants with Tigress, and more implementation details.
The rewriter currently consists of ~3K Python LOC.

2.7 Evaluation 27

Table 2.1. Terminology for obfuscation configurations.

SETTING DESCRIPTION ‘

ROP obfuscation with P3 inserted at a fraction of

ROPy program points k€ {0,0.05,0.25,0.50,0.75,1.00}
and with P; instantiated with n=4, s=n, p=32
nVM n layers of VM obfuscation with ne€{1,2, 3}

n layers of VM obfuscation with implicit flows used

nVM-IMP,
for every VPC load at layer(s) x € {first, last, all}

Table 2.1 details configuration naming for the main ROP and VM experiments.
For the latter we try multiple layers of nested virtualization as this is known to
slow down SE and DSE-based attacks [278,309], and use a Tigress predicate that
adds implicit flows to virtual program counter (VPC) loads: those frustrate taint
analysis-based simplifications and also create many redundant states whenever VPC
becomes symbolic.

2.7.1 Efficacy of ROP Strengthening Transformations

The techniques presented in Section 2.5 should intuitively raise the bar to existing
automated attacks, and hinder symbiotic combinations between them. We now
study how each automated approach feels the effects of each technique individually
already on small program instances, discussing also design-aware enhancements we
tried for ROP tools. In the end, DSE emerges as the one and only viable option for
our attacker.

We leverage the Tigress framework [76] to generate functions appropriate as
reverse engineering targets with a desired complexity and structure. Tigress will also
annotate CFG split and join points with probes to help us measure code coverage.

2.7.1.1 General Attacks

In the context of general-purpose automated attacks, we consider angr [329] as SE
engine, S2E [70] for DSE, and the TDS implementation released by its authors. Let
us start with SE. For P; we consider a function with control structure [76] for (if
(bb 4) (bb4)) having 4 mathematical computations per block, 15 loop iterations,
and a single int as input. In a “ROP-P;” version we encode in the array for Py
n=4 ¢-offsets, with no garbage entries (s=n) and p= 32 repetitions, for a total of
128 cells populated statically.

To explore enough paths to hit all coverage points (Gz), angr took a time in
the order of seconds for the native function, and over 4500 seconds for ROP-P;.
The aliasing P;1 induces on RSP updates for branching slows angr down significantly

5We do not consider commercial tools like VMProtect for two reasons: they offer little control
over the transformations (but may rather combine many at once), and add tricks and bombs [392]
to break deobfuscation solutions by targeting implementation gaps instead of their methodological
shortcomings.

2.7 Evaluation 28

already for little code, as the SMT solver sees increasingly complex expressions over
RSP. Aliasing reverberates on secret finding (G;) too: with a simpler for (for (bb
4)) code, angr cracked the secret in the order of seconds for the original code, and
over 5 hours for ROP-P;. Other configurations of variable complexity confirmed
these trends. When we tested P3 shielding a single program point per basic block,
24 hours were not sufficient for angr to crack the secret. These results suggest SE
may not be readily suitable against our approach.

As for DSE, in the experiments P; impacted it slightly and only for G;: the
reason is that S2E benefits from concrete input values when picking the next path to
execute. For P3 we obtained two confirmations: its two variants bring similar time
increases, and while higher k fractions of shielded program points inflate the state
space possibly more, code with small input space may not always offer sufficient
independent sources (i.e., symbolic registers) for optimal composition of P3 instances.
We postpone a detailed analysis of the induced overheads to Section 2.7.2 as we
consider larger code instances.

P; and P3 resist TDS by design. The tested output traces kept non-simplifiable
(Section 2.5.3) implicit control dependencies from having a tainted input value
determine a jump target: as those are pivotal to put pressure on DSE, combining
DSE with TDS-simplified input traces [392] would not ease attacks.

Summarizing, P; and P3 effectively raise the bar for A; and Az attacks, re-
spectively: SE and TDS look no longer useful already for little code. P» and
gadget confusion target syntactic approaches, unlike the semantics-aware attacks we
considered above: we address them next in the ROP-aware domain.

2.7.1.2 ROP-Aware Attacks

To analyze ROP payloads we use and extend ROPDissector to start from a memory
dump of the program taken when entering the chain of interest: in this configuration
it operates as a hybrid static-dynamic analysis and surpasses ROPMEMU in branch
analysis and flipping capabilities. With ROPDissector now embodying a full-fledged
ROP-A, approach, we test if it can help with Gy, while G is out of scope as Ap
recovers code but neglects data constraints.

Backing our expectations, shielding branches with P, in the rewriting makes
ROPDissector fail in revealing any basic block other than those the input used
for the test reveals. We tried to further extend ROPDissector by using its gadget
guessing technique (a ROP-educated form of pattern matching [95]) to reveal new
blocks by executing the chain at different start offsets. Our gadget confusion however
makes such analysis explode, with many short and unaligned candidate blocks that
are difficult to distinguish from P»-protected true positives.

We conclude this part by stressing the importance of conceiving all of our
protections. P1 impacts ROPDissector only if no dump is supplied, and P3 does not
affect it directly. Hence, without P, an attacker could have used ROPDissector or a
similar tool to aid semantic attacks in code coverage scenarios.

2.7 Evaluation 29

Table 2.2. Successful attacks in the 1h-budget per program.

OBFUSCATION SECRET FINDING CoDE COVERAGE
CONFIGURATION | FOUND \ Avc TIME 100% PoOINTS
NATIVE | 70/72 | 6525 | 72/72 |
ROPo.05 19/72 907.9s 34/72
ROPoy.25 10/72 568.4s 11/72
ROPg.50 9/72 884.0s 9/72
ROPo.75 5/72 775.3s 7/72
ROP1.00 1/72 3028.7s 6/72
1VM-IMP oy 61/72 85.8s 68/72
2VM 62/72 71.6s 67/72
2VM-IMP first 62/72 100.4s 66/72
2VM-IMP g5t 61/72 104.1s 65/72
2VM-IMP,y 62/72 160.6s 64/72
3VM 62/72 119.2s 69/72
3VM-IMP st 54/72 899.2s 56/72
3VM-IMP 45 62/72 240.3s 61/72
3VM-IMPyy; 0/72 - 0/72

2.7.2 Measuring Obfuscation Resilience

We now measure the amount of resources required to carry automated attacks
for secret finding (Gj) and code coverage (Gz) over synthetic functions from an
established methodology. We ask Tigress to generate 72 non-cryptographic hash
functions with 6 control structures analogous to the most complex ones from an
influential obfuscation work [27], input sizes of {1,2,4, 8} bytes, and three seeds
(details in Appendix C).

We exclude techniques that were ineffective on smaller inputs like SE, and restrict
our focus to DSE (recently [278] makes a similar choice). DSE allows us to set up
controlled and accurate experiments for measuring G; and G, as S2E typically
succeeds in either goal in about one minute for each of the 72 functions. This makes
measuring obfuscation overheads feasible, with a 1-hour budget per experiment
sufficient to capture a slowdown of ~50x or higher. With 15 configurations and 2
goals, the tests took > 2000 CPU hours.

In light of all the considerations made in Section 2.7.1, we use a ROP}, setup with
P1 and P3 enabled (P2 and gadget confusion are disabled as they do not affect DSE),
with the same {s,n,p} settings mentioned there for P, and with P3 instantiated in
its first variant and applied at different fractions k of program points (Table 2.1).
As state exploration strategy for S2E we use class-uniform path analysis [57] as
it consistently yielded the best results across all ROP and VM configurations: its
state grouping seems to work effectively for reducing bias towards picking hot spots
involved in path explosion, which could be the case with P3 instances under other
strategies.

2.7 Evaluation 30

ROP, mmmm ROP
os | BB == RSB
3 |-ROPq50

Run-time slowdown
nN

/s /S S 17, L, % % S,
Wy, Rsp Rsp My 6, Py 78 & 0,

%, & ., o Qoo oy, Yo ey, A
’f(/%) Oé//_ G s F RN 7

K
7 e@@ v
(7 Oy

Figure 2.5. Run-time overhead for clbg benchmarks of different ROP} settings with
2VM-IMP,,; used as baseline.

2.7.2.1 Secret Finding

Column two and three of Table 2.2 summarize the results for the differently obfuscated
configurations: for each class we report for how many functions S2E found the secret,
and the average time for successful attempts. For 2 of the 72 non-obfuscated
functions S2E failed also with a 3-hour budget, likely due to excessively complex
path constraints.

Coherently with insights from previous works [278,309], applying one or two
layers of VM obfuscation does not prevent S2E from solving the majority of the
secrets (the same sets of 61-62 functions over 72) even when using implicit VPC
loads®, with average overheads as high as 1.6x when applied to either the inner or the
outer VPC, and 2.46x when to both. For 3VM implicit VPC loads are significantly
more effective in slowing down S2E when applied on the innermost VPC than on
the outermost one, while when used at all the three layers S2E found zero secrets
within the 1-hour budget.

The fraction of successful attacks to ROPy is lower than for VM configurations
already for £ =0.05, except for 3VM-IMP,,;; that however, as we see in Section 2.7.3.2,
may bring a destructive impact on program running time. The fraction of ROP-
protected functions that S2E can crack decreases with k: while we cannot compare
average times computed for different sets, individual figures reveal that S2E can crack
only the simpler functions as k increases, with a higher processing time compared to
when they were cracked for a smaller k.

2.7.2.2 Code Coverage

The last column of Table 2.2 lists for how many functions S2E covered all the CFG
split and join points annotated by Tigress and reachable in the native counterparts
(as the functions are relatively small, we consider coverage an “all or nothing” goal
like in [28,278]). As seen in Section 2.3.1, we recall that secret finding may not require
full coverage (neither achieving G is sufficient for Gi). For most VM configurations,

We do not report data for 1IVM and ROPj—¢ programs since S2E breaks them with no
appreciable slowdown w.r.t. their non-obfuscated counterparts.

2.7 Evaluation 31

the functions for which S2E fully explored the original CFG are slightly more than
those for which it recovered the secret. ROP;, already for £=0.05 impedes achieving
Gy for nearly half of the functions, and leaves only a handful (6-11) within the reach
of S2E for higher k values.

2.7.3 Deployability

To conclude our evaluation, we investigate how our methods can cope with real-
world code bases in three respects: efficacy of the rewriting, run-time overhead for
CPU-intensive code, and an obfuscation case study on a popular encoding function.

2.7.3.1 Coverage

We start by assessing how our implementation can handle the code base of the
coreutils (v8.28, compiled with gce 6.3.0 -01). Popular in software testing, this
suite is a suitable benchmark thanks to its heterogeneous code patterns. Using
symbol and size information, we identify 1354 unique functions across its corpus of
107 programs. We skip the 119 functions shorter than the 22 bytes the pivoting
sequence requires’ (Section 2.4.2.3). Our rewriter could transform 1175 over 1235
remaining functions (95.1%, or a 0.801 fraction if normalized by size). 40 failures
happened during register allocation as one spilling slot was not enough to cope with
high pressure (Section 2.4.3), 19 for code like push rsp and push qword [rsp +
imm] that the translation step does not handle yet (Section 2.4.2.1), and 1 for failed
CFG reconstruction.

As informal validation of functional correctness, we run the test suite of the
coreutils over the obfuscated program instances, obtaining no mismatches in the
output they compute.

2.7.3.2 Overhead

Albeit a common assumption is that heavy-duty obfuscation target one-off or in-
frequent computations, we also seek to study performance overhead aspects. We
consider the clbg suite [146] used in compiler research to benchmark the effects
of code transformations (e.g., [63,96]). As a reference we consider 2VM-IMP 4 as
it was the fastest configuration for double virtualization with implicit VPC loads
(1VM is too easy to circumvent, and 3VM brings prohibitive overheads, i.e., over
5-6 orders of magnitude in our tests).

Figure 2.5 uses a stacked barchart layout to present slowdowns for ROPy, as its
overhead can only grow with k. With the exception of sp-norm that sees repeated
pivoting events from a ROP tight loop calling a short-lived ROP subroutine, ROPy, is
consistently faster than 2VM-1MP,; for £ <0.5, and no slower than 1.81x (b-trees
that repeatedly calls malloc and free) when in the most expensive setting k= 1.00.

2.7.3.3 Case Study

Finally, we study resilience and slowdowns of selected obfuscation configurations on
the reference implementation of the popular base64 encoding algorithm [354]. base64
features byte manipulations and table lookups relevant for transformation code of

2.8 Conclusion 32

variable complexity that users may wish to obfuscate. An important consideration
is that in the presence of table lookups, using concrete values for input-dependent
pointers is no longer effective (but even counter-productive) for DSE to explore
relevant states. We thus opt for the per-page theory-of-arrays ([26,50]) memory
model of S2E. This choice allows S2E to recover a 6-byte input in about 102 seconds
for the original implementation, 180 for 2VM-IMP;,4, 281 for 2VM-IMP;;, and 1622
for 3VM-IMP ;.

A budget of 8 hours was not sufficient for 3VM-1MP;;, as well as for ROPy,
already for k=0 (when only P; is enabled). As anticipated in Section 2.5.5, the
aliasing from P; on RSP updates can impact the handling of memory in DSE
executors in ways that the synthetic functions of Section 2.7.2 did not (as they
do not use table lookups). As for code slowdowns, ROP; seems to bring rather
tolerable execution times: for a rough comparison, execution takes 0.299ms for
ROPg.25 and 1.791ms for ROP; g9, while for VM settings we measured 1.63ms
for 2VM-IMP 45, 347ms for 2VM-1MP;;, 668ms for 3VM-1MP,s; and 2211s for the
unpractical 3VM-IMP ;.

2.8 Conclusion

Adding to the appealing properties of ROP against reverse engineering that we
discussed throughout the chapter, the experimental results lead us to believe that
our approach can:

1. hinder many popular deobfuscation approaches, as well as symbiotic combina-
tions aimed at ameliorating scalability;

2. significantly increase the resources needed by automated techniques that remain
viable, with slowdowns > 50x for the vast majority of the 72 targets for both
end goals Gi_p;

3. bring multiple configuration opportunities for resilience (and overhead) goals
to the program protection landscape.

While obfuscation research is yet to declare a clear winner and automated attacks
keep evolving, our technique is also orthogonal to most other code obfuscations,
meaning it can be applied on top of already obfuscated code (Section 2.4.3). We
have followed established practices [29] of analyzing our obfuscation individually
and on function units, yet in future work we would like to expand both points:
namely, studying mutually reinforcing combinations with other obfuscations, and
applying ROP rewriting inter-procedurally, removing the stack-switching step during
transfers between ROP functions, since our design allows that. Finally, to optimize
composition of symbolic registers when instantiating P3, we may look at def-use
chains as suggested by [278] for FOR cases, exploring analyses like [25] necessary to
obtain the required information.

"While we could have added a trampoline to some code cavity large enough to hold it, these
functions appear to be stubs of unappealing complexity.

2.8 Conclusion

33

This chapter explored how to strengthen software obfuscation with low
overhead. While this effectively slows down attackers with no access to
source code, given enough time or access to source code, they may still be
able to reverse engineer the software under attack. Reverse engineering or
black-box testing may reveal bugs that an attacker can exploit to take control
of a system considered secure. Automated testing is the most effective way
to detect bugs during development, even before product release. In the
following chapters, we explore and improve several automated techniques to
find and mitigate several types of vulnerabilities at scale.

Chapter 3

Predictive Context-sensitive
Fuzzing

3.1 Introduction

Fuzz testing (or fuzzing) techniques earned a prominent place in the software security
research landscape over the last decade. Their efficacy in generating unexpected or
invalid inputs that make a program crash helps developers catch bugs early, even
before they turn into vulnerabilities [68]. As an example, their deployment at scale
in the OSS-Fuzz [145] initiative has led so far to the discovery of over 30,000 bugs in
the daily testing of hundreds of open-source projects.

The most popular and researched form of fuzzing is Coverage-guided Fuzzing
(CGF), which uses code (or possibly other) coverage information extracted from the
target execution to deem whether the current testing input led to interesting (e.g.,
previously unseen) portions of a program. The main intuition behind CGF research
is that code coverage is strongly correlated with bug coverage [280] and no dynamic
testing technique can detect a bug if execution does not reach the corresponding
program point at least once.

Improving the effectiveness of the input generation process in CGF systems is
a flourishing topic of research. For instance, various solutions focus on increasing
the covered code [19,303,398], typically by guiding the fuzzer input mutations to
meet complex control-flow conditions in the program. However, for software testing,
coverage is only one part of the equation [173] and the ultimate metric for the
effectiveness of fuzzing remains the ability to discover bugs.

Other efforts have focused on retaining for further mutations inputs that, while
being equivalent to prior executions in terms of covered program points, exercise new
valuable execution paths and internal states of the program [249]. To this aim, many
state-of-the-art CGF systems track edge coverage information, so as to distinguish
visits to the same basic block from different predecessor blocks [377].

Edge coverage and other function-local metrics track and summarize the effects of
the entire execution on entities from individual functions. A limitation of this strategy
is that they may lead a fuzzer to overlook relevant internal states of a program
related to the different ways in which execution reaches an entity. In program
analysis, this concept goes under the name of context-sensitivity and has seen many

3.1 Introduction 35

applications (e.g., refining the precision of pointer analyses [387], developing compiler
optimizations [159]).

ANGORA [68] has recently showcased the benefits of context-sensitivity for
fuzzing by augmenting edge coverage with global calling-context information, i.e., the
sequence of active function calls on the stack leading to each executing function [98].
Unlike context-insensitive fuzzing, such a fully context-sensitive approach can, in
principle, differentiate the coverage of each testcase in a fine-grained manner and
lead to the discovery of more bugs [68,377].

As accurate call stack tracking and context encoding would be costly and degrade
the fuzzer’s throughput, ANGORA [68] and other fuzzers [131,132] embody a best-
effort strategy for full context-sensitivity: they model the calling context as a hash
of the call stack and compute context-sensitive coverage identifiers by combining the
hash for the current context with the function-local edge identifier upon entering a
basic block.

This scheme is naturally prone to collisions, which are detrimental to fuzzing
as they may lead to missing many relevant testcases [137]. Therefore, these fuzzers
have to resort to larger coverage maps that can severely harm performance. More
importantly, as we study in the chapter, fully context-sensitive approaches are prone
to state explosion and tend to overly discriminate similar testcases, polluting the
fuzzer’s internal queue with a large number of redundant testcases that further
reduce fuzzing efficiency [377].

In this chapter, we show that the current “all-or-nothing” approach to context-
sensitive fuzzing is unnecessarily inefficient and a much more effective approach
is possible. Our proposal is based on three important insights. First, we show
that we can do away with run-time call stack tracking altogether by relying on a
form of target code specialization, i.e., function cloning, which, for a given calling
context, can create a clone of each callee and redirect the caller invocation to it.
With this strategy in place, existing function-local coverage tracking techniques can
naturally disambiguate calling contexts with no changes. As a result, edges from
cloned functions can benefit from the collision-free tracking of modern fuzzers as
their presence implicitly carries context-sensitivity information.

Second, we show that, while fully context-sensitive approaches are in general
problematic due to an inherent state explosion problem, selective approaches can
be a much better alternative. In particular, we show that, with techniques able to
restrict cloning to program portions that are more likely to benefit from a contextual
refinement of their edge profiles, we can bound our cloning efforts to trade a modest
increase in program size with efficient context-sensitivity provided only for the callees
that “matter”. We term our approach predictive context-sensitive fuzzing.

Third, we show that the data flow of a program can be a strong predictor of those
program portions. In particular, we analyze the flow of objects through function
arguments at call sites and pick those call targets that see a highly diverse incoming
data flow compared to other invocations of the function in the rest of the program.
The intuition is that such differences reflect relevant variations in program behavior
that we want to be able to capture by means of context-sensitive coverage tracking.
Moreover, we show that such prediction strategy can be realized by analyzing only
local data flows (i.e., at caller-callee pairs) rather than global ones (i.e., using full
calling contexts). This results in a practical and scalable predictive context-sensitive

3.2 Background 36

fuzzing solution.

On the popular FuzzBench suite [258], the best configuration of our approach
can reveal more unique bugs than best-effort context-sensitivity (+19.05%) and
an LTO-boosted collision-free edge coverage solution (+9.64%). The bugs we find
across fuzzing sessions are different than with edge coverage alone by 18.04%.
As we study in the chapter, this improvement mainly comes from our ability to
explore more pervasively code regions already covered by context-insensitive solutions.
Furthermore, unlike best-effort context-sensitive approaches that harm code coverage
due to internal wastage, we can even slightly improve such metric while experiencing
only a limited growth of retained testcases (+26% w.r.t. edge coverage) and a rather
small impact on the execution throughput (—6.4%). Despite the subjects we studied
are well-tested in prior efforts and daily in OSS-Fuzz, our tests revealed 8 enduring
security issues in the latest code releases for 5 of them. Additionally, we observed
and reported 10 bugs on 6 C++ case studies selected in order to put pressure on our
predictive strategies. At the time of writing, 11 CVE identifiers have been issued in
total.

Contributions. To summarize, this chapter proposes:

e A selective approach to context-sensitive fuzzing that augments only promising
program portions with contextual information, using function cloning to enable
a collision-free encoding with no run-time tracking;

e A data-flow analysis to predict program portions likely to benefit from such
refinement when fuzzing, using a strong local signal given by call-argument
value diversity among different callers for a given target function.

¢ An open-source implementation in LLVM that produces programs suitable for
out-of-the-box fuzzing, available at https://github.com/pietroborrello/
predictive-ctx-fuzzing.

e An evaluation of our techniques on top of AFL++ over the FuzzBench suite,
where we consistently outrank state-of-the-art context sensitive and insensitive
techniques without incurring internal wastage in the fuzzer, exposing several
enduring security bugs. We pair it with 7 case-studies on other well-tested
software, seeking new bugs.

3.2 Background

This section covers fundamental concepts of fuzzing and the pointer analysis primi-
tives that back our predictive approach.

3.2.1 Coverage-guided Fuzzing

Fuzzing techniques have a prominent place in software security research due to
their effectiveness in bug discovery [289]. In the most naive embodiment, a fuzzer
is a system that attempts repeated executions of a target program over randomly
generated testcases while monitoring it for crashes. Many techniques are nowadays
available to optimize the testcase generation process, e.g., to discover more bugs
within a given time budget [42] or to prioritize specific code regions for testing [43].

https://github.com/pietroborrello/predictive-ctx-fuzzing
https://github.com/pietroborrello/predictive-ctx-fuzzing

3.2 Background 37

The amount of information that a modern fuzzer acquires during the executions of
the program under test can vary, leading to a distinction between black-box [165,393],
white-box [142,293], and grey-box [241,399] fuzzers. In particular, grey-box fuzzers
use lightweight instrumentation to track coarse-grained state information such as
the code coverage achieved by each testcase and are largely popular due to their
effectiveness. As we anticipated in Section 3.1, tracking code coverage can also serve
as a feedback for coverage-guided fuzzers, allowing them to distinguish the program
behaviors distinctive of each testcase by profiling, e.g., the control-flow edges taken
during the execution (edge coverage). Ultimately, this choice improves the ability of
a fuzzer to find vulnerabilities [100].

Coverage-guided fuzzers instrument program code to update a coverage map
(e.g., when the program takes a control-flow edge) that eventually serves as a profile
of the testcase execution. Some also keep track of hit counts at coverage points.
A relevant aspect of map updates involves collisions, which harm the effectiveness
of fuzzing: a fuzzer may overlook program behaviors (and in turn bug discovery
opportunities) if the encoding scheme for map updates treats two distinct coverage
facts as if they were the same.

For instance, the popular AFL fuzzer [399] tracks edge coverage by combining,
upon entering a basic block, the index of the current block with the one of its
predecessors as curr®(prev >> 1). Despite a limited run-time overhead, this hashing
scheme incurs frequent collisions [137]. Fuzzers such as AFL++ and LIBFUZZER
mitigate this problem by inserting dummy basic blocks to disambiguate critical
edges [240] in the control-flow graph. Thanks to this transformation, they can track
the original edges by using only the (unique) identifier of the currently executing
basic block in the modified program, therefore achieving collision-free edge coverage.

3.2.2 Pointer Analysis

Pointer analysis is a static program analysis that identifies the possible targets of a
pointer expression [164] by building the points-to set of abstract objects that each
expression may reference. An abstract object corresponds to an allocation site and
concisely represents all the concrete object instances that the program may create
there. Points-to sets are always sound (i.e., they never miss feasible objects), while
their accuracy (i.e., presence of objects that the program will never dereference)
depends on the used pointer analysis.

The first element of differentiation for pointer analyses is the treatment of
dependencies. Every time a location v results into a plausible target for a pointer p,
an inclusion-based analysis [10] adds v to the points-to set for p and re-processes
any constraints involving p at other program points, while an wunification-based
analysis [338] merges the points-to set for p with the one currently holding wv.
Inclusion-based analyses are more precise but face a worst-case complexity that is
nearly cubic, whereas union-based analyses can typically run in linear time [337].

Further relevant properties are flow-sensitivity, i.e., when an analysis can compute
a refined solution for a pointer expression at each program point, and context-
sensitivity, i.e., when it uses contextual information to further differentiate allocation
sites or the location of pointer expressions. Intuitively, an analysis featuring either
property is more accurate but also more expensive to run. Pointer analyses are

3.3 Motivation and Open Problems 38

used in several security scenarios (e.g., [67,167,286]), also thanks to recent technical
advances and state-of-the-art implementations [220, 344] available for mainstream
compilers.

3.3 Motivation and Open Problems

We use the code in Listing 3.1 to showcase how contextual information can help a
fuzzer explore program locations or internal states that may trigger a bug only when
the incriminated code is reached along certain execution paths.

Function set_packet_data contains a heap overflow bug at line 11. To trigger
it, the program state needs to satisfy two conditions: (i) the allocation size of packet
must be less than the size len passed as argument and (ii) the level field of packet
must be 0 to skip the check on the size at line 8 and the subsequent error handling
block. This can happen when the execution reaches set_packet_data from the
encapsulate function. Condition (i) can be met thanks to an integer overflow at
line 15, while encapsulating 256 packets would make the level field overflow and
satisfy condition (ii).

Assuming that function create executes once and before encapsulate, when
execution reaches the buggy line through the call from encapsulate, condition (ii) is
met but a CGF system based on edge coverage cannot see the testcase as interesting
(i.e., bringing new coverage) because the involved edge has been visited before!.
Hence, it will not retain it for further mutations that may meet also condition (i).

ANGORA [68] extends edge coverage to distinguish executions of the same branch
by different calling contexts (Section 3.1). To this end, it tracks the calling context
dynamically as the hash of the current call stack, computed by XOR-ing at each call
and return instruction the current hash value with the unique numeric identifier of
the involved function. Then, it combines this hash with AFL’s edge hash identifiers,
obtaining a best-effort feedback where each map entry should ideally capture a
distinct context-sensitive edge instance.

Challenges We studied the internal fuzzer wastage that comes with best-effort
context-sensitivity approaches by analyzing popular fuzzing subjects with different
configurations of the AFL++ fuzzer. We consider two standard configurations: 1)
a context-insensitive AF L-style setup (EDGES) with a coverage map of 216 entries
indexed by edge hashes; and 2) the default AFL++ configuration (LTO) that uses
collision-free edge coverage (state-of-the-art in the CGF practice, Section 3.2.1) with
unique edge identifiers assigned during link-time optimization.

For fully context-sensitive fuzzing (CONTEXT), we reproduce the working of
ANGORA by combining AFL’s edge encoding with the XOR-based call-stack hash
described above. We study two configurations, with coverage maps of 2'6 and 22°
entries, respectively. As a reference, we also study our approach (PREDICTIVE)
in the variant based on an inclusion-based pointer analysis (the variant using an
union-based analysis—see Section 3.6—performed analogously here).

!Refining edge coverage with AFL-style 1-byte hit counts would not help here. This strategy
effectively differentiates internal states only for small counts [68]: here, after 256 executions of the
branch at line 8, the count overflows and the fuzzer loses sensitivity.

3.3 Motivation and Open Problems

39

I struct packet {

2 ul6é size;

3 u8 1level;

4 u8 datal];
_attribute__ ((packed));

a
-

7 void set_packet_data(struct packet* packet, u8%* buf,

size_t len) {

8 if (packet->level && packet->size != len + sizeof(struct packet)) {

9 error ("Invalid encapsulation");

10 T
11 memcpy (packet ->data, buf, len);
12}

14 struct packet *encapsulate(struct packet* inner) {
15 ul6 size = inner->size + sizeof (struct packet);

17 struct packet *outer = malloc(size);

18 outer->size = size;

19 outer->level = inner->level +1;

20 set_packet_data(outer, (u8%*)inner, inner->size);

22 return outer;

23 }

24

25 struct packet *create(u8 *buf, size_t len) {
26 if (len > 0x1000) return NULL;

27

28 size_t size = len + sizeof(struct packet);
29 struct packet *packet = malloc(size);

30 packet->level = 0;

31 packet->size = (ul6)size;

32 set_packet_data(packet, buf, len);

34 return packet;

Listing 3.1. Motivating example for context-sensitive fuzzing.

3.3 Motivation and Open Problems 40

Figure 3.1 plots statistics collected from a 24-h fuzzing on a subject, 1ibxml2,
particularly representative of the issues behind current approaches. We study the
size of the queue, the throughput (completed executions), the number of distinct
map entries covered by the testcases, and, where applicable, how many per-entry
unique collisions we identified. A collision at a map entry implies that the fuzzer
erroneously treated (at least) two distinct (context-sensitive) edge instances as if
they were the same. The data highlight two internal wastage problems for current
context-sensitive fuzzers, which we refer to as coverage map explosion and queue
explosion.

To understand the first problem, we took a closer look at ANGORA [68]. As
acknowledged by the authors, their encoding method for context-sensitive edge
instances is prone to hash collisions (we identified them on 50.7% of the map entries
for coNTEXT 21¢). Collisions are undesirable, since they lead to loss of context
sensitivity? and ultimately increase the likelihood of discarding useful testcases [137].
Therefore, ANGORA uses a larger map with 220 entries. While this choice can
effectively mitigate collisions (1.2% for CONTEXT 22Y), it can hamper the throughput
of the fuzzer because of higher map access latency (since the map would no longer
fit common L2 cache sizes) and slower processing at the end of each execution.
On standard hardware, we observed slowdowns of one order of magnitude. To
partially mitigate this coverage map explosion problem, we collected our data on a
high-end Intel Xeon Platinum 8160 with a 1-MB L2 cache. Even on such a high-end
configuration, the number of completed executions dropped from ~45 millions to ~7
millions. Such low throughput ultimately resulted in much poorer edge coverage
than any other configuration.

The second problem (queue explosion) is well-understood in literature [377]:
many retained testcases with exceedingly high similarity. For the CONTEXT 26
configuration, the queue size grows significantly (from 9,911 to 33,675 retained
testcases), but the edge coverage achieved over time is appreciably lower than EDGES
(where 9.8% of map entries see collisions) and much lower than the one obtainable
with a collision-free LTO solution. The problem is less noticeable in the CONTEXT
220 configuration (although the queue size still doubles to 21,157), but only because
the much lower throughput (and edge coverage) masks the queue explosion problem.

Summarizing, our analysis shows that prior context-sensitive fuzzing strategies
struggle to achieve good precision without introducing wastage due to explosion
issues: allow more collisions and lose context sensitivity (at the cost of discarding
important testcases), or reduce collisions and overly discriminate contexts (at the
cost of retaining many redundant testcases and trashing throughput). The key
reason this is essentially an impossible needle to thread is that prior strategies are
entirely blind to which of the many distinct contexts (e.g., up to 16M from the main
of 1ibxml2 and, in general, exponentially large w.r.t. the number of functions [387])
are important to capture in order to retain interesting testcases.

2And even worse weaker path sensitivity than a context-insensitive baseline, since a single hash
is used for calling contexts and edges. Therefore, one may suggest combining a collision-free edge
ID with a hash of the context. Unfortunately, this method would be much poorer than the one
of ANGORA due to the limited entropy of edge identifiers, which would be completely marginal
compared to the one of contexts.

3.4 Predictive Context Sensitivity 41

Executions / Map entries
Fuzzer configuration Queue size sec (large L2) Used / Total Colliding
[EDCES (2'¢ map) 9,911 609.04 19.86% of 64 KB 9.8%
[l LTO (collision-free) 11,093 572.02 15.59% of 50 KB -
[CONTEXT (2'¢ map) 33,675 530.10 79.54% of 64 KB 50.7%
[l conTEXT (2%° map) 21,157 84.38 7.21% of 1 MB 1.2%
[l PREDICTIVE 15,455 490.62 9.28% of 256 KB -
8000
— —

7000

(]

2 6000

o

>

5 5000

[

(o))

8 4000
3000

00:00 04:00 08:00 12:00 16:00 20:00 24:00

Figure 3.1. Fuzzer’s internal wastage vs. edge coverage over 24 hours with best-effort
context-sensitivity.

Our Approach We explore a selective angle to deploy context-sensitive fuzzing
in a more effective way: we augment only certain program regions with contextual
information, devising then a novel predictive solution to statically identify regions
that are likely to benefit from context-sensitive edge profiles. As a concrete instance
of this strategy, we favor call sites that see a higher diversity for the incoming
data-flow at call arguments.

For our motivating example, such predictor would recognize that the packet
object flowing into the buggy function comes from different allocation sites depending
on the caller. Furthermore, as we study only local data-flows, instead of the full
calling context we can rely on a much lighter context abstraction that discriminates
only the identity of the caller function.

Ultimately, all these choices allow us to hit the “sweet spot” between insufficient
and excessive context sensitivity, uncovering more bugs in well-known benchmarks
with only a moderate impact on the fuzzer’s internal wastage.

3.4 Predictive Context Sensitivity

This section presents the three main pillars of our approach: 1) a collision-free method
to encode context-sensitivity, 2) a selective approach to restrict such sensitivity to
program regions of interest for the sake of scalability, and 3) a data-flow analysis to
predict regions likely to benefit from having been selected when a coverage-guided
exploration reaches them. We produce a transformed program with context-sensitive

3.4 Predictive Context Sensitivity 42

instances of control-flow edges, added according to a user-specified budget and in a
cost-effective manner. Existing CGF systems can thus test such a program out of
the box.

3.4.1 Function Cloning

A way to turn a context-insensitive program analysis into a context-sensitive one
is to expose to the analysis a separate instance (clone) of the code unit of interest
at each different encountered context. For instance, if contextual information is
represented only by the caller of a function, the analysis may produce separate
results for the unique clones of the callee devised for each possible caller.

Such an approach can accommodate different context-sensitivity definitions.
Let us consider calling-context information, initially on recursion-free programs for
simplicity. One may disambiguate the calling context for a specific function by
taking the call graph of the program and, for each maximal acyclic path that reaches
the function, introducing a clone at every caller-callee pair on the backward walk
to its root node. In this way, whenever the analysis reaches a clone of the original
function, the path from the root function to it is unique. Therefore, the identity of
the clone determines the invocation context.

To handle recursion, we look for functions involved in direct and indirect recursion
by analyzing the strongly connected components (SCCs) of the call graph [397].
During path analysis and cloning, we treat each SCC as a single node without a
self-edge. This allows us to retain precise contextual information before and after
entering recursive sequences (which in general may be unbounded in depth), treating
only the recursive parts in a context-insensitive manner.

For a coverage-guided fuzzer, we need a way to discriminate different clones of
the functions of interest that is both cheap to maintain or retrieve at run-time and
composable with other encoding techniques in a space-efficient and collision-free
way.

An elegant and effective way to maintain context-sensitivity for program points
is to manipulate the code of the program and add concrete copies of the involved
functions. This choice brings several advantages. By exposing contextual informa-
tion through new code locations, we offload the collision problem to the feedback
mechanism already in use by the coverage-guided fuzzer. In the case of edge coverage,
collision-free encodings (Section 3.2.1) will just treat these new context-sensitive
edges with unique identifiers. Furthermore, when deploying context-sensitivity in the
selective flavor that we present in the next section, our scheme brings virtually no
run-time overhead for tracking and retrieving the context, as we trade this efficiency
for a modest increase in program size.

Let us use as running example our program from Listing 3.1. Its caller-callee
pairs are (create, set_packet_data) and (encap- sulate, set_packet_data).
For simplicity, we pick the second for specialization as we know that such path can
expose the bug at line 11. Our cloning primitive adds to the program a duplicate of
set_packet_data, which we call __clone_spd, and patches the call at line 20 to
invoke it in lieu of the original function. When a coverage-guided fuzzer executes
the augmented program, the branch originally at line 8 will benefit from separate
coverage information when reaching __clone_spd, allowing the fuzzer to treat is

3.4 Predictive Context Sensitivity 43

Table 3.1. Code features of FuzzBench subjects.

Benchmark Type Edges Functions Call sites Calling contexts
ffmpeg C, some C++ 716 046 5314 44 500 8 014 021
file C, some C++ 15986 250 985 19 217
grok C++ 94 092 535 2234 11 025
libarchive C 67 096 866 4 377 27 984 301
libgit2 C 107 785 1718 5 467 3 024 953
libhevc C 119 646 197 853 125 907
libhtp C++ 11 203 181 706 6 718
libxml2 C 104 351 1147 6 708 44 652 617 060
matio C 24 112 300 1795 2 793 663
muparser C++ 14 007 103 483 6 120
ndpi C 49 216 355 1991 10 507
njs C 57 402 588 3 818 12 671 908
openh264 C++ 78 819 384 1638 28 441
stb C/C++ 11 861 144 881 11 501
usrsctp C 96 225 405 4 303 3 294 931 527
zstd C/C++ 38 863 848 5 027 140 141

as an interesting testcase (as execution hits a “new” branch) and to retain it for
further mutations that eventually unveil the bug.

By choosing to work on call sites, we can virtually model any notion of context-
sensitivity based on tracking portions of the call stack: a global policy will ensure
that each cloning action draws out a piece of the desired portion. The call sites
present within an added clone may be in turn disambiguated for context-sensitivity
by applying cloning recursively.

3.4.2 The Need for Selective Sensitivity

While cloning can expose context-sensitivity information for program points in a
“fuzzer-friendly” manner, it does not help us get around the path explosion problem
that comes with calling contexts (Section 3.3). As evidence of this issue, Table 3.1
reports statistics collected for programs from the FuzzBench test suite that we later
use for evaluation purposes (Section 3.6).

As a fuzzing harness often tests only a relevant subset of a code base, we collect
the figures after removing all the functions unreachable according to LLVM'’s static
analyses. In the edges column, we report the number of basic blocks that a collision-
free edge coverage scheme instruments after breaking all the critical edges in program
functions [241]. The last three columns represent, respectively, the number of nodes,
edges, and acyclic paths in the call graph.

For many subjects, the number of contexts appears intractable for any practical
collision-free attempt (we will return to this in Section 3.7), including cloning.
Even when the contexts are not millions or more, the number of “context-sensitive”
edges to disambiguate may still increase dramatically when the call sites are many,
requiring in turn large coverage maps for their (collision-free) tracking.

However, we argue that a much more effective approach is possible: adding
context-sensitivity only to selected program portions. Algorithm 1 presents the
high-level workflow: we process the call graph at call-site granularity and follow a

3.4 Predictive Context Sensitivity 44

prioritization policy to pick individual call sites for cloning.

We surveyed static analysis literature for contextual information representation
in the PL community (e.g., [21,277,328]) and derived three policies that approximate
their core ideas by performing a visit of the call graph and assigning priorities
(captured by visit order) according to topological properties:

o top: assigns higher priority to call sites from nodes closer to the root(s) of
the call graph, progressively exposing the context in a top-down fashion as
in [277].

e bottom: assigns higher priority to call sites closer to leaves. This policy
progressively exposes the last entries on the call stack as in call strings [328],
which in some domains can effectively replace the full calling context.

o uniform: treats every call site with the same priority. It resembles [21] and
mixes the effects of the other policies, exposing the top or bottom call-stack
entries leading to a node depending on its proximity to a root node or a leaf.

During preliminary tests?, these policies exposed a few additional bugs compared
to standard edge coverage and best-effort context-sensitive solutions and did not
experience any evident internal wastage. However, their apparent benefits were
modest and also difficult to understand when compared to a randomic policy (which
prioritizes call sites for selection uniformly at random) that we used as a baseline
for selectivity and often had similar performance. The results for randomic, top (as
‘bfs’), and uniform can be found at https://www.fuzzbench.com/reports/expe
rimental/2021-05-25-cloning/index.html and for bottom at https://www.fu
zzbench.com/reports/experimental/2021-07-09-cloning/index.html.

Eventually, we looked at these results retrospectively. Policies of this kind are
well suited for static program analysis scenarios, where partial contextual information
may still expose to an analysis sufficient information to reason on all the possible
refined program states and, in turn, the user can measure the improvement (if
any) in the precision of the returned answers. Instead, coverage-guided fuzzing is a
dynamic analysis technique based on a lightweight abstraction of program state: no
direct static measurement of the benefits of context-sensitivity seems possible. To
effectively take advantage of any added context sensitivity, which can be available
only in a limited quantity, we need a predictor for program portions that may
practically benefit from it in a fuzzing sense.

3.4.3 Data Flow-based Prediction

A pivotal element of our proposal is a prediction-based policy that prioritizes for
cloning those call sites exhibiting higher diversity in the incoming data-flow for the
callee compared to other uses of such function in the rest of the program.

Our hypothesis is that data-flow diversity can be a strong indicator to identify
execution contexts that are related to peculiar internal states of the program and
are thus worth a pervasive exploration by the fuzzer. As we show in Section 3.6, the
analysis that we describe next can be a good predictor for eliciting such states and
uncovering new bugs.

We observe that function arguments are a natural way for programs to orchestrate
data-flows through their code units. Therefore, we study the invocation of every

https://www.fuzzbench.com/reports/experimental/2021-05-25-cloning/index.html
https://www.fuzzbench.com/reports/experimental/2021-05-25-cloning/index.html
https://www.fuzzbench.com/reports/experimental/2021-07-09-cloning/index.html
https://www.fuzzbench.com/reports/experimental/2021-07-09-cloning/index.html

3.4 Predictive Context Sensitivity 45

Algorithm 1: Priority-based Cloning for Partial Context-Sensitivity

function CloneByPriority(program, budget)

callsites Ufepmgmm GetAllCallsites(f)

priorities — GetPriorities(callsites)

pqueue < CreatePriorityQueue (callsites, priorities)

while program.size < budget && callsite < pqueue.pop() do
target <— GetCallTarget (callsite)
new__target <— CloneFunction(target)
SetCallTarget (callsite, new_ target)
new_ callsites <— GetAllCallsites(new_ target)
new_ priorities <— GetPriorities(new_ callsites)
pqueue.push_all (new__callsites, new__priorities)

program function at the different call sites in the call graph and analyze what values
are possible for each of its argument. In particular, we prioritize for cloning the call
sites that pass, via arguments, objects that never or rarely appear at other call sites.

Put in other words, we find it reasonable to differentiate for the fuzzer those call
sites that see peculiar objects, while we predict a lower benefit from doing so at call
sites that see objects that recur elsewhere too. We remark that this choice does not
relate to the complexity of the data-flow, but only to its diversity across distinct
callers.

We use an off-the-shelf pointer analysis to build points-to information (Sec-
tion 3.2.2) for pointer arguments, obtaining the possible abstract objects that an
argument may reference when passed at a call site. We compute the prediction to
use as priority value in Algorithm 1 as follows. Let the target function be in use at
n call sites in the call graph and O be the set of all abstract objects that may be
passed via its arguments at the current call site. The priority p of the call site is:

X Z(n—no)

0€0

S|

p:

where n, is the number of call sites for f where object o may appear in any of
its arguments. As we said ealier, we seek to favor the diversity of the incoming
data-flow: an object o that does not appear at other call sites for the target will
contribute with a n — 1 addend, whereas an object that may appear at all call sites
will give a zero addend. Eventually, the edge coverage collected for the clones will
expose the incoming data-flow diversity to the fuzzer, favoring a more pervasive
exploration of the underlying program states.

3.4.4 Discussion

With predictive context-sensitive fuzzing, we propose to overcome the scalability
and efficiency limitations of current context-sensitive fuzzing flavors by augmenting
only selected program points with context information.

Our data flow-driven prioritization policy turns out to be effective in practice in
discriminating program states that eventually lead to discovering more bugs through
further input mutations. We focus on memory objects as fuzzers are notoriously
effective in exposing memory handling errors [104], especially in combination with
sanitizers [196]. We believe that other data flow-driven policies can help discover

3.5 Implementation 46

further, different bugs. Furthermore, our approach may be adapted to work with
other argument types, for instance by carrying value range analysis [154] on integer
arguments.

Compiler-based instrumentation is a natural way to deploy our approach. For
fuzzing programs available only as binaries, binary rewriting techniques or a modified
JIT can intercept and divert call sites. However, analyzing pointer arguments may
be challenging as, among others, it would need recovering object locations. We leave
this investigation to future work.

3.5 Implementation

We implement our techniques as a set of analysis and transformation passes (2200
C++ LOC) for the intermediate representation (IR) of the LLVM compiler, which is
a popular choice among CGF systems that instrument programs during compilation.
We operate on a link time-ready whole-program IR file [254] for the uninstrumented
program and produce a transformed IR file that we can feed to an off-the-shelf
fuzzer.

As for evaluation purposes we work with AFL++ [132], which is currently one of
the most performant CGF systems, we devise a small Python helper that automates
the compilation process and also the insertion of sanitization machinery. Our cloning
pass has provisions to correctly handle the instrumentation introduced by sanitizers
such as ASAN and UBSAN, which insert tripwires that help fuzzers expose silent
bugs [103].

For sizing purposes, we implement an analysis to estimate how many additional
unique identifiers the collision-free edge coverage encoding of AFL++ (Section 3.2.1)
would need after a cloning decision. This affects the number of elements that the
coverage map of the fuzzer should account for and, therefore, its size. Good fuzzing
practices [68] recommend map sizes no larger than (standard) L2 cache sizes, whereas
overly large maps can be detrimental for performance even on favorable hardware as
we saw in Section 3.3.

This means that, once we set a maximum desirable map size, we can use as
residual budget for cloning the “free” map entries after we accounted for the edges
currently in the program and, potentially, add clones up to its exhaustion.

For our evaluation, we opted for a general budget of 256 KB, which can host
up to 2'® map entries. This general-purpose tuning choice allowed our fuzzers to
discriminate and pervasively explore new program states without incurring internal
wastage. Appendix D.3 details several preliminary experiments that we made with
larger budget choices.

To analyze pointer arguments at call sites, we used the inclusion-based Flow
Sensitive analysis of SVF [344] and the default unification-based analysis of
SEADsA [220].

As an implementation refinement, we heuristically attempt to lower the priority
of a recurrent class of uninteresting targets for cloning: error-handling functions that
lead to program termination. Such functions often see a high number of callers and
an inherently diverse incoming data-flow: in our tests, we observed that targeting
the functions that are called by no less than 25% of all the program functions ruled

3.6 Evaluation 47

out a great deal of error-handling functions with no false positives.

Our prototype can also reason on paths involving indirect-call sites by promoting
each indirect call into a conditional selection of direct calls to plausible targets [8,
24,116]. However, this is disabled by default since reasoning on indirect calls is
notoriously hard. With a static approach, the precision of the pointer analysis for
building call-target sets is crucial [37]: in most of the cases we analyzed, the size
of the resulting sets led to path explosion. Nonetheless, as we will see throughout
Section 3.6, the effects of our techniques allowed us to expose bugs and report
security vulnerabilities in heterogeneous programs written in C++, mixed C/C++,
and object oriented-style C. As future work, we plan to explore the potential benefits
of profile-guided indirect call promotion [24] for these subjects, for instance using
testcases from a short fuzzing session.

3.6 Evaluation

We study the performance of predictive context-sensitive fuzzing using the FuzzBench
testing infrastructure. Popular in academia and industry since its release in 2020 and
targeting real-world programs, FuzzBench has become de-facto a standard fuzzer
benchmarking platform [258]. We study different dimensions of our approach for
the following research questions:

RQ1 What burden do we place on the compilation pipeline?

RQ2 Can we outperform the state of the art in terms of bugs found? And which
prioritization policy performs best?

RQ3 To what extent do we induce internal wastage, if any?
RQ4 Can we also find new bugs in well-tested software?

On top of the popular AFL++ [132] fuzzer, we test two dataflow variants of
the predictive context-sensitive approach (one per selected pointer analysis), the
randomic prioritization policy for uninformed selective context-sensitivity, and the
context best-effort context-sensitivity of ANGORA [68].

To fully cover the context-sensitive fuzzing spectrum, we also test 1to collision-
free edge coverage boosted with link-time optimizations, which not only is the most
effective coverage policy in current CGF systems [132] but, as we discuss later,
incidentally introduces some context-sensitivity.

For context, we use a coverage map of 28 entries to fill the L2 cache (256 KB)
typical of the FuzzBench cloud infrastructure on which we ran the majority of our
tests. We do not evaluate larger sizes as we experienced significant internal wastage
for the reasons discussed in Section 3.3. For 1lto, the number of instrumented
edges in each program (Table 3.1) determines the map size. For our dataflow and
randomic fuzzers, we use the largest cloning budget value such that the resulting
map still fits the L2 cache.

We could obtain a compilable whole-program IR file (Section 3.5) for 16 of the 22
benchmarks from FuzzBench. Bugs and missing features in the GLLVM [254] helper
and other compilation errors unrelated to our techniques prevented us from testing

“For ffmpeg the number of unique edges already requires more than 2'® entries: we set the
budget for it to the nearest feasible multiple of two (768 KB).

3.6 Evaluation 48

Table 3.2. Statistics from the pointer analyses (run-time costs and points-to set sizes)
applied to the FuzzBench subjects.

Time (sec) Memory (MB) [Set| (avg.) [Set| (std.)
Benchmark seadsa svf seadsa svf seadsa svf seadsa svf
ffmpeg 16.54 2193.75 3202 22553 215.53 438 694.64 68.31
file 0.12 25.07 94 522 4.86 2.79 9.36 6.26
grok - 181.55 - 2797 - 174 - 2.92
libarchive 0.65 103.5 242 2073 31.98 2.1 50.99 15.21
libgit2 1.55 446.52 457 4711 92.15 2.41 99.49 9.91
libhevc 0.58 93.73 327 3143 173.45 1.15 71.12 0.52
libhtp 0.09 161.98 89 647 1.77 56.1 1.87 43.79
libxml2 6.4 648.34 870 4289 585.36 9.83 27297 12.26
matio 0.32 111.34 138 1181 79.02 3247 76.72 30.76
muparser 0.1 12.53 97 487 5.68 2.9 9.95 5.83
ndpi 0.62 265.14 309 3250 58.77 115.5 85.7 87.18
njs 2.21 185.14 320 2012 157.78 16.22 190.22 11.74
openh264 0.51 108.55 232 2269 46.32 2.11 61.09 13.39
stb 0.13 12.86 87 413 36.5 2.08 28.7 2.28
usrsctp 1.34 1095.52 330 5851 161.39 55.85 81.29 33.07
zstd 0.32 45.47 175 1206 7.72 13.85 8.67 5.25
Geo-mean 0.62 139.94 255.63 2007.8 4424 7.09 48344 11.074

the other programs. The link-time primitives that became available with LLVM 12
may help for them for future works.

For all the fuzzer configurations that we study, we instrument each whole-program
IR file with the ASAN and UBSAN sanitizers [336] to expose common classes of
silent bugs.

3.6.1 RQ1: Analysis and Compilation Costs

Our approach incurs direct and indirect preparation costs for the transformed
program that we eventually feed to an off-the-shelf CGF system (AFL++ in all our
tests).

Direct costs include generating clones (typically a very fast operation) and
running the analyses behind our predictive policy. Table 3.2 reports the CPU time
and memory usage from running points-to analysis on each whole-program IR file.

The inclusion-based analysis of SVF is more costly, as expected (Section 3.2.2):
it takes on average 139.94 seconds and 1.96 GB of memory to analyze a program,
peaking at 2193.75 seconds and 22 GB on a larger subject like ffmpeg.

The union-based analysis of SEADSA is cheaper, completing in most cases in less
than one second and using 7.9x less memory than SVF. We do not report numbers
for grok as SEADSA mishandles the instrumentation of UBSAN for it.

Table 3.2 reports also statistics on the average number of possible pointed
objects per call-site argument. SVF produces smaller (therefore, more accurate)

3.6 Evaluation 49

sets than SEADSA, with on average 7.09 abstract objects per pointer (~6x smaller
than the average value measured for SEADsA). However, context-sensitivity and
other enhancements make SEADSA produce smaller sets on three subjects (1ibhtp,
ndpi, zstd).

Indirect costs for IR preparation include the impact of cloning on the binary
compilation process orchestrated by the off-the-shelf fuzzer. Among our dataflow
and randomic configurations, we observe an average increase in compilation time of
153 seconds (peaking at 443 on ffmpeg).

As for the resulting binary size increase, which includes the instrumentation
added by the fuzzer for context-sensitive edge instances, we observe a geometric
mean of 3.6x and a peak value of 10.1x (stb grows from 1.45 MB to 14.8 MB), while
libarchive sees the largest produced binary with its 46 MB (initial size: 34.1 MB).
In the context of fuzzing, though, such increases hardly affect performance. This
applies to both persistent fuzzing scenarios (as with FuzzBench), where a binary is
(re)loaded in memory only sporadically, and fork-based settings, which benefit from
copy-on-write OS mechanisms. This observation will be experimentally confirmed
in Section 3.6.3: in our tests, trading such additional space for supporting selective
collision-free context-sensitivity did not harm the execution speed and effectiveness
of our fuzzers.

3.6.2 RQ2: Effectiveness in Bug Finding

To evaluate the bug finding capabilities of our five fuzzer configurations (hereafter
fuzzers for brevity), we rely on the infrastructure of FuzzBench to count unique bugs
via automatic crash deduplication. As we run the fuzzers on its cloud service, each
configuration-benchmark pair sees 20 trials of 23 hours each.

Following standard practices [208], we reason on the median values over all trials
to mitigate the well-known effects of randomness in fuzzing. Figure 3.2 reports the
boxplots for each benchmark showing the number of bugs found by each fuzzer. For
each benchmark, the fuzzers appear in the ranking order given by their median
number of bugs found across the trials (and by their maximum number when breaking
ties).

Trends. To compare the effectiveness of each fuzzer, we first consider the average
score metric from FuzzBench. For each benchmark, the score of a fuzzer is given
by expressing the median number of bugs it finds as the percentage of the median
number of bugs from the fuzzer that performed best on that benchmark. The final
cross-benchmark average score for a fuzzer, shown in Table 3.3, is the average of
individual benchmark scores and mitigates distortion effects due to benchmarks
having a different number of total bugs [258].

The best-performing fuzzers are those using predictive policies. In particular, the
svf fuzzer obtains the highest score with an 11.84 net difference with 1to, which in
turn largely outperforms context; svf will similarly stand out also in the analysis of
individual bugs provided next. The score of the seadsa fuzzer is harmed by inability
to test grok (Section 3.6.1), yet its score is very close to the one of svf. The reason
is that, as it will become apparent in the boxplots of Figure 3.2, seadsa consistently

3.6 Evaluation 50

Figure 3.2. Boxplots with mean value (A) and raw data points () for bugs uncovered in

the FuzzBench programs across 20 trials. Fuzzers are ordered by (median, maximum)
number of bugs found. usrsctp is omitted as no fuzzer found bugs for it.

ffmpeg_ffmpeg_demuxer_fuzzer file_magic_fuzzer grok_grk_decompress_fuzzer libarchive_libarchive_fuzzer
8 4.0 + 6 2.00 +
7 4 35 5 . . 175
6 30{ 1.50
5 - “+ 25 4 125
@ o v v
24 . 220 P - . 23 S1.00
a2 2 2 2
3 15 2 0.75
2] 10 - - 050
1 wm O, .) -
o 0.0 = o 0.00 R e —dr—
8 c) A [4 8 C A 3 [¢ 3) A) A [c 3
libgit2_objects_fuzzer libhevc_hevc_dec_fuzzer libhtp_fuzz_htp libxmI2_libxmI2_xml_reader_for_file_fuzzer
3.00 2.00 6
275 - 175 s L 175
2.50 1.50 1501 "
225 125 4 125 ¢
23 & N &
200{ + 1.00 -
2 2 2 2100 4
175 0.75 21 - 75 b '
1.50 050
125 025 t l >0
A 25 be
1000 ¢ 0.00 ol e . ——
A c B D E A B c D E B E D c A c D B E A
matio_matio_fuzzer muparser_set_eval_fuzzer ndpi_fuzz_ndpi_reader njs_njs_process_script_fuzzer
267 ¢ 107+ . + 107 * ks “
24 10
08 L 08
22 - ‘ 8
. 06 06
520 & 23 &
318 3 3 3
i 0.4 i 0.4
16 -
] . 0.2 4y - 02
1 a a . a a
12 0.0 e 2 0.0 e
A E B c D B C E A D c B D E A B C D E A
openh264_decoder_fuzzer stb_stbi_read_fuzzer 2std_stream_decompress
8 147+ - 2.00 . "
13 1.75
7 - .
1 1.50
w6 - —T— | w11 125 R
23 & B 00 L
3 3 S 1L ~
a 210 2
1T]
9
af . + 050
81 ¢ 1 ! 0.25
3 7 0.00 -
¢) [4 [A c [3) [A 8 c [[3 A
_ A: context D B: dataflow_seadsa .] C: dataflow_svf
[] D:1lto [E: randomic

Table 3.3. Cross-benchmark average score from FuzzBench.

Fuzzer configuration FuzzBench score

dataflow_svf 94.14
dataflow_seadsa 93.69
randomic 82.98
1to 82.30
context 63.42

finds comparable amounts of bugs among runs, resulting into competitive median

val

ues.
As we move to the other fuzzers, we remark how the 1to state-of-the-art config-

uration is a strong baseline. In addition to collision-free encoding of edges, which
outperforms classic (collision-prone) edge tracking and refinements [137], it benefits
from link-time optimizations such as additional inlining. For instance, LLVM may
inline a short-sized callee at a call site for performance, incidentally providing some
context-sensitivity [380] as the inlined edge instances get new identifiers. However,

an

optimizing compiler follows performance-based (rather than context sensitivity-

3.6 Evaluation 51

based) inlining policies. When our data flow-based prediction mechanism drives the
cloning decisions, we can observe a significantly larger number of bugs found for the
subjects considered in this evaluation.

On the contrary, the best-effort context-sensitivity of context clearly suffers
from a combination of the factors analyzed in Section 3.3. While we defer a detailed
discussion of internal wastage effects to the next section, collisions hamper its ability
to distinguish, and thus explore, useful program states that not only the dataflow
fuzzers, but even 1to can often retain in its queue. Combined with the time spent
analyzing likely uninteresting testcases that pollute its queue and the lower end-to-
end throughput (as discussed next), context ranks on average as the least effective
fuzzer configuration in our tests.

Interestingly, though, context is the best performer on matio, which features a
high number of potential calling contexts (Table 3.1). From analyzing its C source
code, we noticed that matio follows an object-oriented paradigm that heavily relies
on evolving the state of a single object. Therefore, we expect a limited diversity
in the data-flow for the definition that we used for our prediction, which sees
objects as a whole. Our approach, apparently, may lose efficacy whenever state
differences involve portions of a single object: even the field-sensitive pointer analysis
behind svf could not draw out complex variations of the data. On the contrary,
svf is the most effective fuzzer on 1ibxml2, another target written in C with an
object-oriented paradigm and with a huge amount of potential calling contexts.
Complex state variations as in programs like matio deserve further investigation,
for example combining our approach with the data-oriented feedback of [130] from
likely invariants for program variables.

In-depth Analysis. We can now qualitatively analyze the unique bugs identified
by the fuzzers svf (125), sea (110 but one subject short), 1to (112), and context
(102). We omit randomic (110) in the following for brevity.

The left part of Figure 3.3 compares the unique bugs found by svf (our best
performer) against the 1to and context fuzzers that embody the state of the art.
Due to internal wastage, context missed 27 of the unique bugs that both svf and
1to could find. Of the 102 unique bugs context found, 74 were found by both the
others, and 82 by svf. As for the 18 bugs that only context could find, 15 were
from matio on which, as we discussed above, our predictive strategies appear less
effective. On the other hand, svf revealed twice as many (43) unique bugs missed by
context. As for our other predictive configuration, seadsa revealed 28 additional
bugs, missed 23 bugs (2 from grok that was not tested), and shared 82 bugs with
context.

The right part of Figure 3.3 compares the unique bugs found by 1to against the
two predictive fuzzers. Our fuzzers found several bugs that 1to missed: 23 for svf
(+20.2%) and 15 for sea (+13.1%). Of the 112 bugs found by 1to, the bugs missed
were 12 for svf (-10.7%) and 22 for sea (-19.6%). Here, sea is hampered by not
being able to compile grok, losing any opportunity to find the 7 bugs from svf or
the 6 from 1to in it.

To study how refined contextual information is behind the bugs that only our
fuzzers found, we analyze the characteristics of each crashing testcase. To this end,

3.6 Evaluation 52

I:] 1to - " :‘

18 \ 9 |
I:] context \ /

I = \ /

l:l seadsa -~

Figure 3.3. Venn diagrams for unique bugs found by the fuzzers.

Table 3.4. Impact of cloned functions on locally reproduced bugs.

seadsa svf

(Locally reproduced) bugs missed by 1to 15 23
Code covered by 1to w/o crashing 15 16
Execution of testcase invokes clones 14 21
Stack trace for crash contains clones 12 14

Table 3.5. Median queue size and executions/second ratio for each fuzzer across 20 trials
of the FuzzBench programs.

Queue size Executions per second
Benchmark context seadsa svf lto rand. context seadsa svf Ito rand.
ffmpeg 11202 9536 9787 9713 8711 148 176 189 190 143
file 4046 2653 2681 1734 2645 425 438 463 501 425
grok 17651 - 4503 4093 4975 35 - 152 131 137
libarchive 8007 6608 6938 5526 5410 1659 1395 1421 1601 1500
libgit2 2443 1206 1190 1128 1271 899 896 826 868 931
libhevc 13229 9035 8727 7515 11161 166 138 153 122 172
libhtp 9243 13984 13878 6466 13990 2193 2964 2881 2274 2814
libxml2 41928 14106 15652 13977 15126 1352 1158 1090 1132 1249
matio 15040 10412 10374 9068 10935 298 389 415 492 334
muparser 1837 1456 1522 1184 1828 1215 2121 2183 3221 2108
ndpi 1623 1754 1673 1651 1783 38 42 39 42 42
njs 27660 5288 5083 4862 5236 498 620 570 650 623
openh264 6904 8625 8031 5239 7770 6 8 8 10 9
stb 3761 6292 6297 3228 6102 1414 1131 1384 1565 1330
usrsctp 2632 1635 1700 1631 1635 2351 2127 2164 2318 2136
zstd 26711 33782 25671 18464 28259 6516 4463 5149 6307 4841
Geo-mean 7784 5564 5416 4283 5528 431 535 506 541 502

we downloaded the queue from each trial from the FuzzBench infrastructure and ran
each testcase on a locally compiled binary. Unfortunately, we could not reproduce
some bugs counted by FuzzBench as the available enclosing zip files turned out
corrupted.

To identify when, despite the context-sensitivity enrichments from LTO decisions,
traditional edge coverage produced testcases that covered buggy code without
inducing a crash, we check the bugs found only by our fuzzers against the cumulative
coverage achieved by 1to on each of its 20 runs.

3.6 Evaluation 53

Table 3.4 shows that all the code behind (locally reproducible) bugs additionally
found by seadsa was always covered by 1to without yielding a crash (15/15). For
svf, 16 out of 23 additional bugs occurred in code that 1to covered without yielding
a crash. Interestingly, instead, nearly one third (7/23) of the bugs missed by 1to
come from new code coverage, which we believe the fuzzer could obtain by further
mutating testcases that only context-sensitive edge counts made it retain.

More generally, for the majority of additional bugs from our fuzzers, we observe
that one or more cloned functions are active on the call stack upon the crash, sug-
gesting that cloning choices directly contributed to exposing the bug. In other cases,
contextual information helped by retaining a testcase during previous executions (as
it exercised edges from clones), allowing the fuzzer to further mutate the program
state and data until exposing the bug. All these considerations back the intuition
that data-flow diversity is a good predictor of regions that may remarkably benefit
from context-sensitivity when fuzzing. We will resume this discussion in Section 3.6.4
by presenting a case study.

On a different note, by comparing the data points of Figure 3.2 with the code
features of programs listed in Table 3.1 (we provide the reader with a simplified
view in Table D.1 of Appendix D.1), the bug finding capabilities of our two fuzzers
do not reflect a strong influence from the source language, even for C++ subjects.
Section 3.6.4 will provide further thoughts on this point.

3.6.3 RQ3: Internal Wastage

As discussed in Section 3.3, internal wastage may hamper the effectiveness of a fuzzer
by making it explore uninteresting program states and/or face higher latencies for
completing the execution cycle of each testcase. We studied its impact by collecting
statistics on the queue size and the execution throughput of each fuzzer at the end
of the session in Table 3.5.

Our two predictive fuzzers yield a median queue size that, on average, is moder-
ately larger than the value measured for 1to: by 26.4% for svf and 29.9% for sea.
As we discussed, some of the additionally retained testcases let them further explore
states that led to additional bugs, with the data-flow being an effective predictor for
eliciting such states. The queue median size growth for the all-or-nothing approach
of context is on average 81.7% compared to 1to, with peak values on grok (331.2%),
libxml2 (200%), and njs (468.9%).

To better put these numbers in perspective, we first study how many executions
each fuzzer completed in a unit of time. Compared to the baseline 1to, we observe
for context a reduction of the fuzzing execution throughput by 20.3% on average,
whereas our svf fuzzer (the best performer in RQ2) is slower than 1to by only 6.5%
on average. As anticipated in the discussion of RQ1, our compile-time cloning did
not introduce any significant execution speed penalty (unlike, e.g., [224]).

Next, we also study how code coverage was affected. Context-sensitive approaches
mean to favor more pervasive explorations of program states already reachable via
function-local feedbacks (i.e., edge coverage), but internal wastage effects can hamper
code coverage itself. Compared to 1to, the best-effort context-sensitivity of context
was detrimental for the code coverage obtained on several benchmarks (1ibarchive,
libhtp, 1ibxml2, matio, njs, openh64, stb). Both of our predictive fuzzers perform

3.6 Evaluation 54

£
/
2 2 |1 3
s
5 3)

I:] 1lto - -
I:] context 1 &
I:] svf
D seadsa

Figure 3.4. Breakdown of new bugs for FuzzBench programs.

well, obtaining coverage close to 1to and higher in at least one variant (typically
svf) on all subjects except openh264 and ztd, showing no internal wastage. For
this improvement, we note that the refined data-flow along cloned call sites may
help the fuzzer retain and later mutate testcases that eventually lead to new code,
as we observed in RQ2 for some of the additional bugs found by svf. Omitted here
for brevity, Figure D.1 in Appendix D.1 provides complete charts for each fuzzer
and program.

3.6.4 RQ4: New Bugs

As a last dimension to investigate, we conducted two sets of experiments on bugs
that our approach can find in well-tested software, leaving out the less performant
randomic for brevity.

FuzzBench. We first analyzed whether any bugs discussed in RQ2 would affect the
latest program versions too (February 2022), which follow those used in FuzzBench
by 9 months to over 4 years and are tested daily by the OSS-Fuzz initiative. As
shown in Figure 3.4, 33 testcases (deduplicated by FuzzBench) could crash those
versions too: in particular, svf (26 found out of 33) widely outperforms context
(21), which in turn found only one bug that svf or even 1to did not.

For the 33 testcases, we ruled out a few that matched issues in existing public
bug reports and responsibly disclosed all the others to the respective developers. For
bugs that hinted at ostensible security issues, we conducted further manual analysis
to identify the logical root cause underlying each bug and cluster them accordingly
(that is, we “conceptually” merged some). This analysis exposed 8 potential security
issues in 5 programs: ffmpeg (1), njs (1), stb (4), libhevc (1), and matio (1). Six
of them received a CVE ID (Appendix D.1), 1 was deemed a duplicate of one of
our newly assigned CVE IDs (stb), and 1 was not considered a vulnerability by the
vendor according to its criteria (we reported an undefined behavior from an invalid
shift in 1ibhvec). From commit dates, the issues were present in programs since at
least 1.5-3 years.

In more detail, 5 issues derive from bugs found by our predictive fuzzers only: 3
for stb and 1 each for ffmpeg and 1ibhevc; the svf variant exposed them all while
seadsa missed 1. For these issues, 1to typically covered the involved code without
triggering a crash, with the exception of 1 issue (exposed by svf) as it involved new

3.6 Evaluation 55

Table 3.6. Bugs found in the additional studied C++ programs.

Benchmark context seadsa svf Ito

exiv2 2 6 4 5
harfbuzz 1 1 1 1
httplib 1 1 1 1
lrzip 3 3 3 3
powerdns 0 0 0 0
protobuf 2 2 2 2
solidity 0 2 1 0
N / N
1 3 (" 3 0
\ 9
0 \ 0 y
I:] 1to N N
I:] context 0 0
I:] svf
D seadsa

Figure 3.5. Breakdown of new bugs for programs of Table 3.6.

code coverage. The remaining 3 issues came from bugs spotted by both svf and
1to°.

CVE-2022-28048 As a case study, we discuss one of the CVEs assigned for stb,
which is an image processing C library tested daily in OSS-Fuzz. The issue showcases
how context-sensitivity is helpful to expose overlooked buggy code and how our
predictive, data flow-based mechanism made effective cloning decisions for that
end. It manifests as a heap use-after-free violation caused by an out-of-bound array
write during JPEG decoding. The vulnerable function stbi__process_marker does
JPEG segment processing and sees high call counts from two call sites: in the
initial header parsing of stbi__decode_jpeg_header and in the subsequent image
decoding of stbi__decode_jpeg_image.

For the first call site, the parser logic curtails the set of feasible program states by
discarding early invalid header segments that would hit the bug, making it very hard
for the fuzzer to expose it. This, however, does not occur at the other call site, which
takes in non-header segments. Context-insensitive fuzzers and their enhancements
like 1to cover edges of the vulnerable function, but do not differentiate (and thus
retain testcases for) the program internal states when invalid segments reach it from
the second call site because they see no novel coverage. Our predictive approach
introduces context-sensitive instances of these edges: the fuzzer sees them as distinct
and will further mutate the associated testcases, eventually exposing the bug. Both
svf (0.91) and seadsa (0.98) selected the call site for cloning with a high priority
value p (Section 3.4.3).

3.6 Evaluation 56

More C++4 Programs. As a second set of experiments, we studied 7 additional
real-world subjects often used in prior works [130,249] and/or tested daily in OSS-
Fuzz. We specifically chose C++ programs to confirm that our approach can expose
more and diverse bugs than context or an LTO-boosted edge coverage despite our
prototype presently does not make predictions on the data-flow at indirect call sites.
Table 3.6 shows the total unique bugs found in 5 fuzzing runs of 24h on the Intel
Xeon Platinum 8160 machine used in Section 3.3.

In this experiment, the four fuzzers revealed 15 bugs in total: as shown in
Figure 3.5, seadsa is the best performer and exposed them all. Both of our
predictive fuzzers found all the bugs exposed by context (9) and additional ones in
exiv2 and solidity, which context likely missed due to internal wastage factors.
svf yielded the same bug count (12) as 1to: at a closer look, svf found 1 more bug
in solidity but missed 1 of the 5 bugs that 1to found in exiv2.

The increment and diversity of unique bugs found by our approach on these
subjects appear consistent with the RQ2 experiments. Besides fuzzing randomness
factors, a reason behind the excellent performance of seadsa here may be the recent
refinements to the pointer analysis of SEADSA to remove oversharing effects [220],
which in the experiments of the authors led to higher precision than SVF on different
C++ subjects.

For the 15 bugs, we conducted a manual analysis alike to the one described for
the FuzzBench new bugs and responsibly disclosed all the issues to the involved
parties. As of now, lrzip, harfbuzz, solidity and protobuf-c saw 5 CVE IDs
assigned while we are awaiting bug evaluation for the others.

3.6.5 Discussion

In our tests, predictive context-sensitive fuzzing significantly outperforms the all-or-
nothing, best-effort approach pioneered in ANGORA. The internal wastage factors
induced by the latter make it fall behind even the randomic fuzzer configuration
in several tested dimensions (e.g., 110 vs 102 unique bugs in RQ2). Our data-flow
based predictive policy largely outperforms randomic as well as the three topological
policies (top, bottom, uniform) that we evaluated in preliminary tests and discussed in
Section 3.4.2. The results back our expectation that providing efficient and collision-
free context-sensitivity only for the callees that matter—heuristically identified with
a predictor based on diverse incoming data-flows at call sites—offers a practical,
cost-effective, and scalable fuzzing solution.

Our techniques come with tenable compilation and analysis overheads, very
limited run-time overhead, and do not cause queue explosion. The moderate number
of additional testcases in the queue was instead instrumental for discovering more
bugs in the tested benchmarks. Also, retaining a testcase characterized by a context-
refined data flow occasionally helped a fuzzer reach new code through subsequent
mutations.

The variant based on SVF generally resulted as the most effective configuration.

5Our readers may wonder why 1to would still find bugs in well-tested software. While OSS-Fuzz
conducts daily 5h tests on them, the collision-free configuration that we use is more performant
than its settings thanks to LTO effects (including amounts of context-sensitivity from extensive
inlining, Section 3.6.2).

3.7 Related Work 57

A thorough study of the divergences in the cloning choices from different pointer
analyses may be a promising direction for follow-up work. Appendix D.2 discusses a
very fast intra-procedural analysis that we designed for minimal preparation costs
in continuous integration pipelines.

Detailed analyses of the identified bugs revealed that not only our fuzzers found
more and different bugs than context and 1lto, but also uncovered enduring bugs
and security issues in subjects well-tested by the community. Even on programs
that make a heavy use of functions pointers (i.e., the 7 case studies), our approach
largely outperformed best-effort context-sensitivity [68] and could reveal more bugs
than an LTO-boosted edge coverage; a profile-guided extension (Section 3.5) could
be a worthy direction to improve our results.

3.7 Related Work

Local Feedbacks. A few function-local feedbacks have been proposed as a re-
placement or extension of code coverage. Padhye et al. [283] analyze alternatives
such as the number of bits matched between operands of integer comparisons (for
input-dependent conditions that are difficult to satisfy) or the size of allocation
operations (for memory corruption-related bugs). Wang et al. [377] study, among
others, extensions for the edge-coverage feedback currently in use by most CGF
systems. For instance, the authors evaluate n-gram feedback to track bounded-
length sequences of consecutively traversed edges as a better approximation of the
program behaviors. Other efforts investigate auxiliary feedbacks involving data
profiles [130,162,251]. As local feedbacks can naturally be augmented with our
cloning-based context-sensitivity, future research may involve identifying profitable
combinations.

Directed Fuzzing. While directed fuzzing is a long-studied subject [138,141], its
combination with grey-box fuzzing was only recently introduced with AFLGO [43].
This flavor of grey-box fuzzing can guide the exploration towards specific program
points deemed interesting: for instance, a vulnerable code location. AFLGO builds
a whole-program inter-procedural control flow graph (CFG) and assigns weights
to basic blocks to define a distance function from the entry point to the target
locations. The fuzzer uses this information to assign more energy to testcases that
can potentially generate (directly or indirectly) a testcase triggering the target
location. HAWKEYE [67] improves the underlying CFG construction adding indirect
calls targets, relying on the accuracy of the underlying pointer analysis used to
resolve the indirect calls.

While directed fuzzing focuses on reaching predetermined program points based
on user-specified criteria, our approach automatically selects interesting program
points for context-sensitive coverage tracking. Nonetheless, our approach can po-
tentially enhance directed fuzzing in two ways: (i) context-sensitivity may improve
CFG construction (refining pointer analysis results for indirect calls) and (ii) given a
stacktrace, we may clone only the specific context that leads to the target program
state and assign ad-hoc weights to clones.

3.8 Conclusion 58

Software Hardening. A few hardening solutions resort to cloning techniques,
often in combination with pointer analyses. Constantine [48] uses function cloning to
improve the accuracy of pointer analysis by adding context-sensitivity. The authors
apply the method to the cryptographic functions in a library that are secret-sensitive,
which are typically in limited number that somewhat bounds explosion issues. The
prioritization based on data-flow diversity that we propose may potentially help
Constantine scale to bigger programs.

ProbeGuard [34] clones functions to provide hardened versions that can be
hotpatched to protect programs from probing attacks. Control-flow integrity solutions
leverage type or pointer analyses to enumerate the possible targets of a indirect
branches, and restrict the code to follow one of them [73,353,364]: also in this
setting, cloning functions may potentially improve the precision of the underlying
analysis.

FIRestarter [33] provides an efficient crash recovery solution based on Software
(STM) and Hardware (HTM) Transactional Memory, by cloning program parts to
provide both the STM and HTM version. DynPTA [286] enhances a unification-based
pointer analysis with context-sensitive heap modeling using function summaries to
distinguish different allocation sites, ultimately treating them as virtual clones of
the original function.

Calling Contexts. Programming language literature largely studied calling con-
texts and their portions (e.g., [9,21,328,345,387]). Due to their sheer number, a static
enumeration of calling contexts is often unfeasible [345], and even space-efficient
dynamic methods need wide identifiers to keep collisions low [45]. Furthermore,
for complex programs, short executions often result in dozens of million distinct
contexts [98,99]. Unlike cloning, these techniques incur non-negligible temporal
or spatial overheads, hindering an effective composition with local feedbacks used
by fuzzers. Also, we have shown that full context-sensitivity can be unnecessarily
inefficient when fuzzing, while selectivity can be much more effective.

3.8 Conclusion

In this chapter, we presented a novel approach to context-sensitivity in fuzzing
which we term predictive context-sensitive fuzzing. Our proposal stems from the
analysis of existing context-sensitive approaches, which track full calling contexts
and allow context/edge hash collisions for the sake of a practical implementation.
Such approaches face an impossible trade-off: allow too many collisions and lose
context (but also path) sensitivity, allow too few and incur trashing behavior due to
queue/map explosion.

With predictive context-sensitive fuzzing we show that it is possible to find the
sweet spot by proactively selecting (and cloning) only the contexts that look more
promising (as predicted by program analysis), forbidding unpredictable collisions
and eliminating internal wastage. Our tests show that data-flow diversity can serve
as an excellent predictor for such contexts, with significant coverage and bug-finding
improvements compared to the most performant state-of-the-art solution (e.g., +9.8%
total bugs, also different by 18.04%).

3.8 Conclusion

59

However, fuzzing can only find bugs that violate properties that the fuzzer
checks, possibly through the use of sanitizers (e.g., out-of-bound accesses
for ASan [320]). Thus, fuzzing will be able to find a precise subset of bugs,
mainly defined by the sanitizers it uses. Sanitizers usually try to detect
subtle memory corruptions or other common types of undefined behavior.
In the next chapter, we introduce a sanitizer and a static analysis framework

to detect subtle type confusion bugs that would elude the detection of
state-of-the-art sanitizers.

Fuzzing is a highly effective way to a wide range of security-relevant bugs.

Chapter 4

Uncovering Container Confusion
Bugs in the Linux Kernel

4.1 Introduction

Complex software often makes use of class and type hierarchies to achieve modularity
in the design and favor code reuse for operations meant to work on similar objects.
Interestingly, this phenomenon is not exclusive to software written in object-oriented
languages. One compelling case involves the C language, as implementors of kernels
and large userland applications commonly resort to custom means, namely structure
embedding, to model inheritance between typed structures. In the lack of explicit
language provisions, the validity of casting operations becomes an implicit assumption
from code semantics (i.e., on implementation correctness).

Structure embedding operates by declaring an instance of a more general typed
structure (the parent) as a field of a more specific one (the child). A well-known
example is the 1ist_head structure in the Linux kernel. In this chapter, we will
sometimes refer to such structures as objects. Code that needs to access the more
general representation of an object, thus realizing an wupcast, will simply use the
member field for the parent in the object. This operation is intuitively safe. Code
that needs to access a more specialized representation of an object, thus realizing a
downcast, will (unsafely) manipulate the parent pointer to recover the address of the
child.

In more detail, an object downcast subtracts the offset of the parent field in the
child object from the address available for the parent, yielding the address of its
container structure (i.e., the child). The term container follows from the popular
container_of macro pioneered by the Linux kernel. Issuing a downcast is not only
always unsafe, but even not conforming to any C language standard [279]. Thus,
the correctness and safety burden is on the shoulder of the developers, who have
to guarantee through program semantics that the requested child type is correct.
Failing to meet this requirement would cause a type confusion, which may have
possibly disastrous consequences, such as a memory corruption vulnerability [229].

For object-oriented languages, runtime type information (RTTI) enables straight-
forward validation of downcasting operations. For example, current solutions that
look for type confusion in C++ code rely on forms of RTTI tracking [113,121,152,200].

4.1 Introduction 61

Solutions with provisions for C code can detect (some) cases of type confusion by
intercepting heap allocations of objects and binding them with their top-level alloca-
tion type [113,200] in userland code, whereas for kernels current mitigation proposals
require costly manual rewriting to encode type information at every allocation
site [121].

In this chapter, we take a systematic approach to discover type confusion vulner-
abilities resulting from incorrect downcasting on structure embeddings, which we call
container confusion. We design a new sanitizer that does away with runtime type
tracking of objects and uses instead information on object allocation boundaries,
which we obtain using an off-the-shelf solution. In more detail, we rely on redzones
from memory sanitization literature [320] to augment allocation sites for out-of-
bound access detection. Our sanitizer checks type compatibility for a downcasting
operation by checking the relative position of the embedded parent structure, the
outer child structure, and the redzones. This scheme transforms a type check in
multiple straightforward structure bound checks, with low runtime overhead and no
manual code changes.

We apply our sanitizer to the Linux kernel, one of the most complex and
security-sensitive program instances. An initial study of its code base, which we
conducted to gauge the potential bug surface, reveals more than 50,000 occurrences
of container_of involving nearly 4,000 structure types. The type graph is also
highly connected, with extreme cases such as 1ist_head used as parent for over
1800 child types.

We fuzzed a sanitized build of the kernel for one week and uncovered 11 cases
of container confusion, including long-standing container confusion bugs present in
its code base since 18 years. As the kernel is continuously fuzzed under multiple
sanitizers and configurations, these findings lead us to argue that our approach can
find bugs that current state-of-the-art testing practices fail to capture.

By analyzing the nature of such bugs, we identify five container confusion patterns
of general interest. We use such patterns to develop a static code analyzer that
can process the whole kernel in only a few seconds, allowing us to reach also code
compartments that fuzzers may not cover. The static analyzer identifies 366 potential
cases of confusion: by manual analysis, we identify 78 other bugs along with 179
anti-patterns where code correctness hinges only on implicit assumptions on program
semantics.

We responsibly reported our findings to the Linux kernel maintainers, who
acknowledged them, and proposed patches for all the bugs we found. At the time of
writing, 94 patches have been merged in the kernel. Our reports sparked valuable
discussions which, among others, resulted in upgrading the C standard (to mitigate
recurrent issues that we found) and in an attempt to change the list iterator integral
to the kernel.

In sum, this chapter proposes the following contributions:

e« We systematize a class of type confusion bugs, showing how C programs
are affected by incorrect downcasting on structure embeddings. We dub it
container confusion.

e We design a sanitizer for them that does away with type tracking and show its
applicability to the Linux kernel.

4.2 Background 62

e We derive 5 general patterns of container confusion from bugs we found in the
kernel and design a static analyzer around them to make our approach scale
in coverage.

¢ We evaluate our approach on a recent Linux kernel version, identifying 11 bugs
with dynamic analysis (e.g., fuzzing) and another 78 bugs through our static
analyzer.

Our sanitizer and static analyzer form a framework, UNCONTAINED, open-sourced at
https://github.com/vusec/uncontained-sanitizer and https://github.com
/vusec/uncontained-dataflow.

4.2 Background

In this section, we will provide the relevant background to understand the remainder
of the chapter.

4.2.1 Type Confusion Bugs in C++... and in C

Casting an object to an incompatible type violating casting rules (i.e., bad-casting)
causes type confusion. For instance, a static downcast in C++ checks only if the
source and destination types are in the same type hierarchy, but not if the runtime
destination type is the expected one. As a result, large C++ projects, such as the
major browsers, parts of Windows, and the Oracle JVM [152], are rife with type
confusion bugs.

Downcasting in C. The problem is not limited to object-oriented languages
such as C++ but also extends to large programs written in C. Since C is not
an object-oriented programming language, it does not support classes like C++.
However, developers use structure embedding to benefit from an approximation of
classes and inheritance. In particular, properties shared by multiple types are defined
as a struct embedded in all the relevant types. In such a way, all the child types
inherit the struct members declared in the parent type that is embedded. We show
a simplified example of such use in Listing 4.1. Since the child type includes the
parent type in this design, it is called a container.

Analogous to C++, we require primitives to go from the child type to its parent
(“upcasting”) and from the parent to its child type (“downcasting”). Upcasting is
implemented by obtaining a pointer to the embedded parent structure from the
child structure and is guaranteed safe. Downcasting is not defined in the C standard
since it would require using a pointer to the parent structure to obtain a pointer
outside of the memory defined by the type of the parent structure itself [279]. Still,
many projects, including the Linux kernel, do exactly that. Given a pointer to the
parent in a type hierarchy based on structure embedding, they implement their own
version of downcasting, often in the form of a macro, that uses pointer arithmetic to
calculate a pointer to the child type.

Such a macro is often named container_of. The reference implementation in
the Linux kernel is shown in Listing 4.2. The container_of macro is not exclusive

https://github.com/vusec/uncontained-sanitizer
https://github.com/vusec/uncontained-dataflow
https://github.com/vusec/uncontained-dataflow

[

- W

-

4.2 Background 63

// parent struct

struct usb_request {
void x*xbuf;
unsigned length;
dma_addr_t dma;

}
// child struct
struct gr_request {
struct usb_request req; // member field

struct gr_dma_desc *first_desc;

};

5 // child struct

struct goku_request {
struct usb_request req; // member field

unsigned mapped:1;
};

Listing 4.1. Structure embedding example, where gr_request and goku_request “inherit”
from usb_request.

#define container_of (ptr, type, member) ({ \
void *__mptr = (void *) (ptr); \
((type *) (__mptr - offsetof (type, member))); \

i)

Listing 4.2. container_of implementation in the Linux kernel.

to the Linux kernel but present in many large C projects such as Qemu, Nodejs,
Xorg, the Windows kernel, git, FreeBSD, and XNU.

List Iterators. As an example, consider the popular 1ist_head structure that
programmers embed in their data structures in the Linux kernel to create a double-
linked circular list, with next and prev pointers pointing to the next and previous
list_head element of the list. Iterating over a list, we know we have reached the
end when we encounter the same pointer a second time. An empty list has its next
and prev pointers pointing to itself. Issuing a container_of on a list_head allows
access to the derived type, i.e., the element of the entry.

While there are different ways to use list_head, adding a linked list to a
structure in the Linux kernel is a matter of embedding a list_head whose next
field points to the first entry of the list, while that of the last entry points back to the
list_head in the “owning” data structure. In this way, all list entries have the same
type, except the owning structure that anchors the head of the circular list. Similarly,
it is safe to issue a container_of from any list entry, except for the list_head in
the owning structure, where it would lead to container/type confusion. The owning
structure need not even be a struct, as it could also be a single 1ist_head variable.

To iterate over a list, the kernel uses macros such as list_for_each_entry.
It repeatedly follows the next pointer to find the next 1ist_head and then uses
container_of to set the iterator to the base of the entry that embeds it. For

4.3 Container Confusion in the Linux Kernel 64

instance, we can iterate over all inodes of a superblock as follows:

// owning data structure -> struct superblock embeds ’struct

list_head s_1inodes’

struct superblock *sb;
// iterator -> struct inode embeds ’struct list_head 4i_sb_list’
struct inode *inode;

list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
spin_lock (&inode->i_lock);
// do more with inode

This is safe if the possibly invalid list iterator, upon loop exiting, is not used
afterwards. While the most common, 1list_head is not the only iterator in the
Linux kernel but most work in a similar way. Well-known further examples include
single-linked lists (hlist_node) and red-black trees (rb_node).

This chapter will highlight several cases where iterator invariants are violated,
resulting in buggy code.

4.2.2 Sanitizers

Sanitizers are runtime tools to detect undefined behavior in programs, typically
through compiler-based instrumentation that checks undefined behavior. The best-
known example is AddressSanitizer (ASan) [320], which detects memory errors such
as buffer overflows and use-after-frees. ASan instruments every memory access with
a check that consults a shadow memory to see if the memory access is valid. In
particular, to detect buffer overflows, ASan pads memory allocations with redzones
and poisons the memory in the shadow memory (setting it to a nonzero value) so
that any future access results in an ASan error. In this chapter, we will repurpose
ASan redzones to detect object boundaries.

4.3 Container Confusion in the Linux Kernel

In this section, we discuss security risks that can arise from container confusion,
examine a real-world bug as a running example, and show to what extent the Linux
kernel resorts to structure embedding.

4.3.1 Security Implications

Like C+-+’s static_cast, the container_of macro does not perform runtime
checks to verify whether the structure is actually contained within the expected
outer structure. When this is not the case, container confusion leads the program
to access memory under wrong assumptions on its layout. Two base scenarios are
possible: a) the structure is embedded in a different container, leading to member
access over memory contents typed for another layout; or b) the structure is not
embedded in a container, leading to a pointer that is out-of-bounds by the relative
offset assumed within the container.

The security implications of bad casting have been well-researched for C++
(e.g., in the CaVeR paper [229]) and similarly apply here, being container_of

15

4.3 Container Confusion in the Linux Kernel 65

static int gr_dequeue(struct usb_ep *_ep,
struct usb_request *_req) {
struct gr_request *gr_req; // renamed: was ‘req’

¢

struct gr_ep *ep = ...; // derived from

_ep

list_for_each_entry(gr_req, &ep->queue, queue) {

if (&gr_req->req == _req)

break;

3
if (&gr_req->req != _req) {

ret = -EINVAL;

goto out;
3

}

Listing 4.3. Using the list iterator gr_req past its validity causes container confusion.

equivalent to C++’s static downcasting. Such effects can range from subtle state
corruptions to controlled out-of-bounds accesses that attackers can evolve for exploit
construction. The security risk is mainly dependent on structure layouts, for example
when memory containing function pointers can be overwritten. To probabilistically
mitigate these and other issues, the Linux kernel can randomize the layout of some
structures at compile time [172]. While this can make exploitation less reliable,
in some cases it may also turn an unexploitable bug into a security vulnerability.
At the time of writing, only a few structure types (65 in the entire kernel) can
undergo randomization: enabling it globally can be difficult as code may assume
a specific layout for some structures, while others have layouts that are tuned for
better performance [93].

We will show concrete examples of security risks uncovered by the dynamic and
static analyses of UNCONTAINED in Sections 4.6 and 4.7.3, where we outline, among
others, a vulnerability that breaks Kernel Address Space Randomization (KASLR)
and a controlled out-of-bound write. We will also discuss examples of bugs that may
affect execution semantics.

4.3.2 Running Example

We discuss next our running example (Listing 4.3) involving the kernel USB stack
to better illustrate container confusion.

The function gr_dequeue() iterates over a list of requests to find and re-
move the one matching the supplied _req argument. Under correct operation,
container_of (&4ep->queue.next, struct gr_request, queue) in the macro at
line 6 takes the address of field queue in a gr_request list entry and subtracts a
quantity y=offsetof (struct gr_request, queue) to make it point to the entry
itself.

However, if the list is empty or does not contain it, the execution leaves the
list iterator variable gr_req with a container-confused pointer. As mentioned in
Section 4.2.1, the list iterator would incorrectly reference the owning structure (i.e.,
the list head), which has gr_ep type. The confused container_of subtracts x from
the pointer to the field queue in this other structure: the result will point somewhere

4.3 Container Confusion in the Linux Kernel 66

B list_head [work_struct] hlist_node B timer_list [[] aspinlock

Figure 4.1. Type graph for container_of (and alike) instances.

within structure *ep.

The exploitability of the bug depends on the position of field req, used at line 10,
within gr_request structures. Listing 4.1 shows the partial structure layout. Had
the position been “deeper”, the resulting pointer could have reached and surpassed
the outer gr_ep structure, referencing the adjacent heap storage. Were _req to
match such an out-of-bound pointer, the code attempts to remove a list entry that
is not present, possibly causing further memory corruption.

Rich discussions followed our disclosure of the bug to the Linux kernel mailing
list. As a result, the maintainers opted to migrate to the C11 standard, which would
allow them to define the iterator variable with a scope limited to specific loops,
preventing its usage afterwards. In the next section, we will examine the potential
surface for container confusion cases in the Linux kernel.

4.3.3 Type Graph Complexity

To examine the use of structure embedding in the Linux kernel, we analyze the
prevalence of container_of and its derivatives, as container_of takes part in
several macros and inline functions. Depending on the selected kernel configuration,
we note that the build system of the kernel can choose between different function
implementations and even type definitions. Hence, we study the Linux kernel v.5.17
with the configuration in use to Google’s syzbot [144] for continuous fuzzing.

4.4 UNCONTAINED Overview 67

We write an LLVM compiler pass to spot all the uses of container_of in the
source code as lowered during compilation and track the parent and child types
at each such use. This allows us to build a type graph that captures the possible
containment relationships between different structure types. We count over 56,000
downcast instances (as container_of or any of its derivatives) under our kernel
configuration.

As the chapter will detail, the type graph is a foundational element of our approach
to container confusion detection. Figure 4.1 shows the one being discussed here,
highlighting the relationships between the embedded types. Each node represents a
type involved in a downcast. We have a (directed) edge between two types if we
find a downcast instance that derives a child of the destination node type from a
parent of the source node type. We also compute edge weights based on the number
of such instances.

While we count as many as 18323 types in all the code for the build, we find
4275 of them to be involved in downcast operations: 506 can occur as parent and
4033 as child object. To our surprise, this implies that almost one-fourth (23.3%) of
all types are involved in structure embedding.

For example, the usb_request structure shown in Listing 4.1 can be embedded
in 17 different child structures in use to different USB drivers. Generally speaking,
a variety of destination types may favor cases of invalid runtime downcasts.

By looking at topological properties of the type graph, we find that 3486 of
the 4033 possible destination types are not contained in any other type, meaning
no other type “inherits” from them. 419 of the 506 possible source types have an
out-degree greater than one, meaning that they can have multiple child types; 221
have more than 10 possible child types.

In the figure, we also highlighted the top-5 structure types by highest number of
child types: 1list_head (1857), work_struct (611), hlist_node (244), timer_list
(235), and gspinlock (223). Each colored cluster shows the possible destination
types for such a source type during downcasting.

Looking at edge weights, the structure types most often used as parent when
downcasting are list_head (22033), inode (7669), device (4130), hlist_node
(3221), and rb_node (2272). Several of them are involved in iterators.

We also note that 1ist_head emerges as the type with most child types that
inherit from it and as the most used parent type across the whole kernel code base.

As the main takeaway of this study, we argue that the prevalence of container_of
and derivatives, combined with the notable complexity of the type graph they induce,
makes a compelling case for seeking container confusion bugs.

4.4 UNCONTAINED Overview

In this chapter, we design and implement UNCONTAINED to detect container confusion
bugs in the Linux kernel.

In Section 4.5, we present a novel container confusion sanitizer that uses object
boundaries to detect invalid downcasts during dynamic analysis. After describing
the design and implementation, we evaluate effectiveness and performance of the
sanitizer by combining it with the well-known syzkaller [373] kernel fuzzer and other

4.5 Container Confusion Sanitizer 68

outer_type

list

N
O container_of(ptr, outer_type, list)

l outer_type

list

I

OT_.

container_of(ptr, outer_type, list)

Figure 4.2. Redzone layout for a valid downcast (top) and for an invalid one (bottom).
Here, list is the member field name.

benchmarks. Finally, we use the sanitizer to analyze the occurrence of container
confusion in the Linux kernel.

Achieving code coverage with dynamic analysis on the Linux kernel can be
challenging due to the amount of complex code. In Section 4.6, we therefore analyze
the bugs we detect through fuzzing and identify common bug patterns that result in
invalid container_of usage. Based on these patterns, we develop a static analyzer
to search for additional bugs without suffering from the lack of code coverage
inherent to dynamic analysis in Section 4.7. In particular, we design and implement
a configurable LLVM forward and backward dataflow analysis to identify potentially
buggy code patterns. We then analyze any additional bugs found by the static
analysis, including a worrying out-of-bounds write, and demonstrate an acceptable
rate of false positives. Although static analysis has lower accuracy than dynamic
analysis, it acts as an effective complement for code that dynamic analysis fails to
reach.

4.5 Container Confusion Sanitizer

This section introduces the sanitizer component of UNCONTAINED meant to detect
cases of container confusion at runtime. We explain its design and implementation
in Section 4.5.1 and Section 4.5.2, respectively, and evaluate it in Section 4.5.3.

4.5.1 Design

Our sanitizer aims to expose container_of uses where an incorrect destination
(i.e., child) type causes a container confusion. As we anticipated in Section 4.1,
detecting such errors with existing approaches to type confusion detection would
require maintaining a form of RTTI for each allocated object.

Our design aims instead for a general solution that does not incur code modifica-
tions and/or pointer tracking costs while achieving broad compatibility. The key
idea is to turn a downcasting validity check into multiple bound checks relative to
the current embedded object (the parent) and the requested container object (the
child) of a container_of operation. Parent and child here are synonyms for inner
and outer structure.

18

4.5 Container Confusion Sanitizer 69

static int gr_dequeue(struct usb_ep *_ep,
struct usb_request *_req) {
struct gr_request *gr_req; // renamed: was ‘req’

¢

struct gr_ep *ep = ...; // derived from

_ep
list_for_each_entry(gr_req, &ep->queue, queue) {
if (&gr_req->req == _req)
break;
3

if (!check_redzone(gr_req, sizeof (struct gr_request))) {
uncontained_report (gr_req) ;

}

if (&gr_req->req != _req) {
ret = -EINVAL;
goto out;

}

}
Listing 4.4. Running example with our bound checks added.

We analyze structure definitions and use the relative distances of an embedded
structure from the start and the end of its container structure as the discriminating
factor for violations. When the container object is of the requested type, its allocation
boundaries will align perfectly with those that one can infer starting from the parent
pointer. A violation occurs instead when the object enclosing the parent turns out
to be larger or smaller than expected on either side.

To insert sanitization checks, inferring the expected boundaries of a child object
is straightforward, as both its size and the displacement of the parent field from its
start are known at compile time. However, even at runtime, the actual boundaries
of an object are normally not available in C programs.

Object Boundaries. For reliable boundary identification, we rely on standard
runtime means in use to sanitizers that target spatial memory safety violations.
Namely, we pad object allocations with redzones (Section 4.2.2) and use them to
recover object boundaries. The addresses immediately preceding and following an
object will appear as invalid in the shadow memory, while those at the boundaries
will be valid.

For a container_of operation, we can thus check for the validity of memory at
the expected start and end addresses of the requested container, and the invalidity
of the memory right before and after them, respectively. This will readily expose
mismatches between expected and actual boundaries.

Figure 4.2 shows an example of valid and bad downcasting, highlighting the
differences in their object redzone layouts.

Container Nesting. The bounds-checking policy we just presented may mishandle
containers that are embedded in another container. For those cases, we cannot expect
the presence of redzones for the inner container, being it a structure field. However,
we can still do our validation through the outer container. In the Linux kernel,
only 547 of its 4033 container types may incur such a scenario, whereas for 3486

4.5 Container Confusion Sanitizer 70

256
128
64
32

Count

[5, =N NN

container_of class: (offset of parent field, size of child)

Figure 4.3. Distribution of container_of invocations according to offset of parent field
and container size. Logarithmic scale.

no nesting is possible. Therefore, when the desired child type of a container_of
instance is one of those 547, we apply the following scheme if the normal bound
checks fail.

We note that a container_of operation carries the expected type for the inner-
most container only. Moving to an outer container, we can check if its boundaries
(i.e., the redzones around it) align with the layout expected for any of the container
types that have a field of the expected inner container type. This information
is available in the type graph (Section 4.3.3) at compile time and we compute it
recursively for multi-nesting cases. If the redzones of the outermost container do
not match any feasible layout, we report a container confusion error.

Time-of-use Checking. In the Linux kernel code, we found several cases where a
container_of instance sees at runtime also objects of an incompatible type but the
following code is never affected by the confusion. For example, with list iterators,
the obtained child pointer was used only to access the parent again through the
child field corresponding to it. These anti-patterns in the programming practice are
not strictly bugs. Therefore, in our design, we opted to validate a container_of
instance at the time of use for its output pointer rather than immediately when
downcasting. Listing 4.4 shows our running example augmented with bound checks
around redzones.

To identify uses of the output pointer, we run a standard intra-procedural def-
use [155] analysis. As the program may modify it before dereferencing it (e.g.,
to access a child field), we analyze pointer arithmetic operations and, when the
modification can be determined statically, we forward the check to the next use
of the pointer. When the program dereferences it or we can no longer follow it
statically, we emit bound checks and have them account for the modified offset, if
any.

Discussion. The sanitization scheme we propose can detect container confusion
by relying solely on structure layout knowledge (known at compile time) and object
boundaries (obtainable with off-the-shelf lightweight techniques). When both sources
are accurate, no false positives are possible.

Compared to an ideal design that tracks pointer types, the price we may pay for
our efficiency and compatibility relates to false negatives when an invalid downcast
involves an object whose layout coincides with the one of a valid child type.

To look into this dimension, we identify a domain and a codomain for it. As

4.5 Container Confusion Sanitizer 71

domain, we study how many unique container_of instances are present in the Linux
kernel as we consider the pair (parent field, child type) for a downcast operation.
We include the field as one child may embed multiple parents. As codomain, we
identify pairs of the form (offset of parent field, size of child) for such operations,
since these are the two quantities that we use—independently from one another—for
bound checking. We count 6526 unique instances mapping to unique 3262 pairs. A
collision occurs when two distinct instances map to the same pair.

The distribution in Figure 4.3 shows that 40.8% of the unique container_of
instances map to one pair exclusively, 16.9% to 2-4 pairs, 21.1% to 4-32 pairs, and
only 5 of them to 100 or more pairs. Hence, we expect collisions to be infrequent. We
then analyze them under the realistic hypothesis that incorrect downcasts happen
only over objects of related types. When counting all the siblings and descendants
in the type hierarchy for the expected downcast type of a unique container_of
instance, we measure the probability of a collision to be 0.0283, which decreases to
0.0088 when considering siblings only.

Note also that one may avoid false negatives almost entirely by adding padding
bytes to structures mapped to the same codomain point(s). We leave this investiga-
tion to future work.

4.5.2 Implementation

The sanitizer of UNCONTAINED consists of two components. The first one is a
coccinelle [284] script to intercept occurrences of container_of at the source level,
which the C preprocessor would otherwise expand before we may instrument them.

The second one is a pass for the intermediate representation (IR) of the LLVM
compiler (v.12.0.1) implemented in 1640 lines of C++ code. The pass is responsible
for building the type graph of the code base, expanding the intercepted container_of
instances, and adding sanitization machinery.

We also develop a framework! of potentially independent interest to apply custom
LLVM passes during kernel compilation and run VMs for testing (e.g., with syzkaller)
and debugging, automatically spawning one with a breakpoint attached to the found
crash site for manual inspection in gdb.

To have full visibility on type information, we run our pass as a link-time
optimization. We then leverage the existing redzone insertion and shadow memory
mechanisms of Kernel Address Sanitizer (KASAN) [214] to support object boundary
identification for stack, global, and heap-allocated variables. While our sanitizer can
coexist with KASAN’s machinery to sanitize memory accesses for safety violations,
we disable its generation as these checks are unnecessary for our purposes.

As mentioned in the previous section, correct object boundary identification is
essential for precision. This aspect is not influenced by the redzone size (for which
we use KASAN’s defaults), as the shadow memory has always 1-byte granularity.
However, even state-of-the-art techniques for redzones fail to handle the edge cases
we discuss next. As they may lead to false positives, we disable confusion checks for
them.

We find two object allocation schemes that require special handling. One involves

! Available at https://github.com/Jakob-Koschel/kernel-tools.

https://github.com/Jakob-Koschel/kernel-tools

4.5 Container Confusion Sanitizer 72

a known limitation of redzones with arrays: in these cases, redzones cannot be inserted
around their individual elements, unless one modifies the type definition. With a
coccinelle script, we identify in the code base all the types that take part in array
allocations and disable the validation of container_of instances using them as a
child type. For future work, we are considering the addition of machinery to test
all possible array cells when their number is known statically, whereas for dynamic
sizes the recent proposal of bounded flexible C arrays [81] may be of help.

The second scheme involves the allocation of multiple, differently typed structures
(e.g., kalloc (sizeof(A) + sizeof(B), ...)) followed by pointer extraction for
each structure. While we should consider this an anti-pattern, it occurs frequently
and we therefor devise a coccinelle script to disable the involved types from validation.
However, for a few recurring cases and if code semantics allowed doing so safely, we
manually split allocations and enable container confusion detection for types like
io_buffer used in io_uring code or net_device private data in networking code.

Overall, for the two schemes, we disable validation for 13926 out of 56468
downcasts. We also highlight that the shadow memory and redzones of KASAN
operate only after the early boot phase of the kernel. Heap objects allocated by the
boot memory allocator memblock have no redzones: we identify and skip them using
address range checks at runtime.

While we test and evaluate our sanitizer around the Linux kernel, the adaptations
needed for other subjects would be limited. Redzone management for userland
software is available in LLVM with AddressSanitizer [320], while kernels like FreeBSD
and XNU have their own KASAN implementation.

4.5.3 Evaluation

We run our sanitizer on the Linux kernel v.5.17 (commit c¢269497d248e). For the
fuzzing experiments, we use syzkaller (commit 9e8eaa75a18a) and build two images
compiled, respectively, with the default kernel configuration and the one in use to
Google’s syzbot [144], as it enables additional features. The choice is an attempt to
slightly balance the exploration of code between pervasiveness and breadth.

To stress specific/additional components, we also run typical userland workloads
such as installing programs with the aptitude package manager, executing binutils
utilities, code for SGX enclaves, and the Linux Test Project [227].

As experimental setup, we ran syzkaller for one week on two Ubuntu 22.04.1
(Linux kernel v.5.15) host machines with 16 cores @2.3GHz (AMD EPYC 7643), using
a total of 16 QEMU-KVM virtual machines with 4GB RAM and even distribution
of the default and the syzbot-configured builds.

4.5.3.1 Discovered Cases of Container Confusion

Our fuzzing campaign revealed 37 cases of container confusion. After manual analysis
of the crash sites, we identified 11 unique bugs and 10 anti-patterns. The remaining
16 are false positives deriving from missing redzones in mixed-type allocations that
our coccinelle scripts miss (Section 4.5.2). Adding them to our filtering logic is
a one-time effort that would prevent such false positives from occurring in future
campaigns.

4.6 Retrospective Analysis and Bug Patterns 73

The 11 bugs affect the following kernel subsystems: drivers/net, net/{ipv4&6,
sctpl}, £s/f2fs, and sgx. We responsibly disclosed and proposed patches to the
maintainers for all the bugs: at the time of writing, all patches have been or are
being merged. We present five of these bugs in Section 4.6. The 11 bugs had not
emerged, e.g., in the continuous fuzzing efforts from Google’s syzbot, which uses
state-of-the-art sanitizers like KASAN and tests several configurations.

The 10 anti-patterns relate to places where a container confusion occurred
but developers manage it explicitly later. As examples, we briefly describe two
of the anti-patterns that our sanitizer found. The first involves the function
crypto_alg_lookup() of the Kernel Crypto API. The function can return a pointer
to a synchronous-hash structure (shash_alg) confused as if it were an asynchronous
(ahash_alg) one. However, all the users of the function eventually check the re-
quested instance type through additional fields to differentiate them and correctly cast
the confused pointer before use. The second involves the inet_lookup_established()
networking function, which can return a pointer to a struct inet_timewait_sock
confused as a struct sock. Similar to above, all the users of the function check the
socket state to differentiate them.

4.5.3.2 Runtime Overhead

We conduct two sets of experiments to measure the overhead introduced by the sani-
tizer component of UNCONTAINED: the bare sanitization costs with LMbench [257]
and their impact on the end-to-end throughput when fuzzing with syzkaller.

We run the LMbench programs on a single QEMU-KVM instance with 8 GB
of RAM executing on an i7-10700K CPU host machine with minimal background
activity and identical software to the previous experiments. We repeat each experi-
ment 10 times, taking the median value for every program. Our sanitizer introduces
a geomean overhead of 74%. As a reference, KASAN introduces a 126% overhead
(with 33% coming from redzone management, which we use too). We list figures for
the individual programs in Appendix E.1.

For fuzzing throughput, we measure how many test cases one syzkaller VM
executes within the first hour of fuzzing. We take the median value of 10 experiment
repetitions, starting from an empty fuzzing corpus. The syzkaller baseline with no
sanitizers enabled executed 80348 test cases, whereas with UNCONTAINED 69734 with
a net reduction of the fuzzing throughput of around 13%. As a reference, KASAN
introduced a 55% net reduction of the throughput. We find our approach to induce
an overhead? acceptable for fuzzing.

4.6 Retrospective Analysis and Bug Patterns

The cases of container confusion that our sanitizer detected when fuzzing revealed
several lingering bugs and anti-patterns in the Linux kernel. Their analysis brought
out two key reflections we present next, as they motivate and form the basis of the
research from the remainder of the chapter.

20ne opportunity to reduce it would be to follow [326] by disabling stack walking upon memory
(de)allocation events, as it helps only for crash debugging/deduplication but is expensively frequent.
Each crash may be analyzed offline by re-running the test case in an unmodified KASAN.

4.6 Retrospective Analysis and Bug Patterns 74

Unexplored Code. In spite of the widespread use of containers, the issues found
were located in a fairly limited, yet relevant, subset of the Linux kernel code base.
Prolonging the fuzzing campaign by a few days did not uncover new bugs.

We find this to stem directly from the inherent coverage problem of dynamic
tools. Much code may be locked under specific kernel states [153,405], require
emulation for crossing the hardware/software barrier with device drivers [291],
or need complex input generation logic (e.g., with protocols). Special-purpose
fuzzers [85, 285,291, 311, 326, 334, 335, 349], which one may run naturally on our
instrumented kernels, currently exist only for a fraction of such components.

This led to us eventually to investigate container confusion detection through
static approaches that could cover the whole code base, even if with a diminished
precision/recall.

Dynamics of Bugs. We noted a few distinctive traits in the nature of the bugs
spotted with the experiments of Section 4.5.3. These may make some bugs harder
to reason about, especially for static analysis. However, as we show in Section 4.7,
domain knowledge (e.g., on list operations) can come to the rescue.

For example, one trait relates to whether, for a container_of instance that
sees objects incoming from a given program path, confusion occurs on all or only a
few of them (e.g., only on a list’s owning element). Another relates to whether, on
the path(s) from the container allocation to its confused use, pointer upcasts and
downcasts involve indirection (e.g., the address is stored in a field of another object).

In the following, we present five bug patterns that encompass all the issues of
Section 4.5.3 and represent general forms of container confusion. These patterns are
distinct, albeit not exhaustive in terms of possible types of confusion (other than
those we encountered). Most importantly, the descriptions we give are actionable
for program analysis (Section 4.7).

Pattern @: Statically Incompatible Containers. This pattern describes the
most generic and shallow container confusion that we identified. It involves using a
type (or member field) that is always incorrect when downcasting object pointers
incoming from a certain program path.

Listing 4.5 reports an exemplary bug found when fuzzing in the sock_init_data()
function while manipulating a socket struct. The function assumes that its struct
socket* sock parameter is embedded in a socket_alloc container. This assump-
tion is correct for most sockets in the kernel, except for TUN and TAP ones. Hence,
when a program path from function tun_chr_open() reaches the buggy function,
its argument is embedded in a tun_file container instead.

When the function assigns the socket with the owner’s UID, the confused bytes
are always set to zero in the kernel configuration that we tested. Any TUN or TAP
socket thus appears as owned by the root user, nullifying user-based firewall /routing
rules possibly in place. The severity of the bug may be even amplified by the effects
of structure randomization (Section 4.3.1). At the time of disclosure, the bug had
been present in the Linux kernel for more than 6 years.

4.6 Retrospective Analysis and Bug Patterns 75

static int tun_chr_open(struct inode *inode, struct file *file) {
struct tun_file *xtfile;

sock_init_data(&tfile->socket, &tfile->sk);

struct inode *SOCK_INODE(struct socket *socket) {
return &container_of (socket,
struct socket_alloc, socket)->vfs_inode;

void sock_init_data(struct socket *sock, struct sock *sk) {
if (sock) {

sk->sk_uid = SOCK_INODE(sock)->i_uid;
} else {

}

Listing 4.5. The first argument to sock_init_data() is contained within tfile when
called from tun_chr_open(). SOCK_INODE() incorrectly assumes sock to be contained
within a socket_alloc struct.

static void inet_diag_msg_sctpasoc_£fill(
struct inet_diag_msg *r,
struct sock *sk,
struct sctp_association *asoc) {
union sctp_addr laddr;

laddr = list_entry(asoc->base.bind_addr.address_list.next,
struct sctp_sockaddr_entry, list)->a;

if (sk->sk_family == AF_INET6) {

(struct in6_addr #)r->id.idiag_src = laddr.v6.sin6_addr;
}
}
Listing 4.6. list_entry() assumes the presence of at least one entry

within asoc->base.bind_addr. address_list, causing a container confusion in
inet_diag_msg_sctpasoc_£fill due to the missing check for whether the list is empty.

Pattern @: Empty-list Confusion. As we anticipated in Section 4.2.1, a
confusion can originate when issuing a container_of operation on the owning
structure of a circular list. When such a list is empty, the owning structure sees
the next and prev fields of its embedded list_head point to itself. Accessing list
members in a list_entryg, list_first_entry, or list_last_entry operation
causes container confusion.

Listing 4.6 reports an exemplary bug found in the kernel networking stack when
fuzzing. Since the inet_diag msg_sctpasoc_£ill() function assumes that the
asoc->base.bind_addr.address_list list is populated without checking for it,

[

- W

4.6 Retrospective Analysis and Bug Patterns 76

void inet_bind_hash(struct sock *sk,
struct inet_bind_bucket *tb,
const unsigned short snum) {

hlist_add_head (&4sk->sk_bind_node, &tb->owners) ;
}
int __inet_hash_connect (..., struct sock *sk, ...) {
struct inet_bind_bucket *tb;
if (port) {
tb = inet_csk(sk)->icsk_bind_hash;
if (hlist_entry ((&tb->owners)->first,
struct sock, sk_node) == sk &&
I!sk->sk_bind_node.next) {
inet_ehash_nolisten(sk, NULL, NULL);
spin_unlock_bh(&head->1lock) ;

return O;

}

7}

Listing 4.7. inet_bind_hash() inserts list elements using the sk_bind_node member,
whereas __inet_hash_connect () accesses them incorrectly using the sk_node member.

laddr points to a container-confused object when the 1ist_entry() operates on
an empty list. The code at line 11 copies some of its fields into memory provided to
userspace. As these confused fields contain kernel heap pointers, this results in a
KASLR leak that deterministically breaks the address randomization of the kernel,
which often represents one of the first steps in kernel exploitation [150,170,194,217].
At the time of disclosure, the bug had been present in the Linux kernel for almost 7
years.

Pattern @: Mismatch on Data Structure Operators. Insertion, deletion,
selection, and other operations on objects taking part in container-based data
structures (e.g., lists, trees) should see the use of consistent types and member fields.

Listing 4.7 shows an exemplary bug found when fuzzing involving the sock
structure. A struct sock can be inserted in multiple lists by embedding multiple
list structures. Among others, two single-linked lists use the fields sk_bind_node
and sk_node. The socket code manages the &tb->owners list, which holds sockets
using their sk_bind_node member. But __inet_hash_connect () accesses the same
objects using the sk_node member. As the two members are located at different
offsets, the downcast adjusts the pointer incorrectly, causing container confusion. As
a result, the condition at line 17, which controls a fast path for the function, never
evaluates to true. At the time of disclosure, the bug had been present in the Linux

11
12

13

4.6 Retrospective Analysis and Bug Patterns s

void sgx_mmu_notifier_release(struct mmu_notifier *mn,
struct mm_struct *mm) {
struct sgx_encl_mm *encl_mm = ...;
struct sgx_encl_mm *tmp = NULL;

list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) {

7}

if (tmp == encl_mm) {
list_del_rcu(&encl_mm->list);
break;
}
}
if (tmp == encl_mm) {
synchronize_srcu(&encl_mm->encl->srcu);
mmu_notifier_put (mn) ;
}
Listing 4.8. Incorrect use of the list iterator variable tmp after the loop in

sgx_mmu_notifier_release().

ret = kobject_init_and_add (&f2fs_feat,
f2fs_feat_ktype,
NULL, "features");

ssize_t f2fs_attr_show(struct kobject xkobj,
struct attribute *attr, char x*xbuf) {

struct f2fs_sb_info *sbi = container_of (kobj,
struct f2fs_sb_info,
s_kobj);

struct f2fs_attr *xa = ...;

return a->show ? a->show(a, sbi, buf) : 0;

}

Listing 4.9. Invalid container_of on kobj (originating from &f2fs_feat) in
f2fs_attr_show().

kernel for 18+ years (i.e., the extent of its git history).

Pattern @: Past-the-end Iterator. Developers often rely on a break-like logic
when searching for an element in a data structure using iterators. Program semantics
may sometimes deceive them into believing that a search will always succeed, so
they may use an iterator without checking for its validity, which would not hold if
the loop completes.

This container confusion characterized our running example (cf. Section 4.3.2).
Listing 4.8 shows another exemplary bug that we found in SGX code when running an
enclave in our instrumented kernel build using gemu-sgx. As the function processes
an empty &encl_mm->encl->mm_list list, the tmp iterator is never assigned a valid
entry, holding a confused pointer after the loop. At the time of disclosure, the bug
had been present in the Linux kernel for more than 2 years.

3We recall that list_entry is simply an alias for container_of.

4.7 Static Analyzer 78

Pattern @: Containers with Contracts. An object embedded in a data
structure may come with additional metadata (e.g., custom RTTIs [229]) that
program semantics uses as an implicit contract to control what operations can be
done on it.

This is the case with the sysfs subsystem of the kernel, which lets userspace
programs inspect and control several kernel features. Listing 4.9 shows a container
confusion that we found in an inspection function when fuzzing. Here, the kobject
that kobject_init_and_add () registers is not embedded in another structure, but
the buggy £2fs_attr_show() function treats it as if embedded in a £2fs_sb_info
structure.

This plays out as a “controlled” confusion, as the contract (i.e., the companion
object of type ktype at line 3) carries a pointer, retrieved at line 11, to a function
that does not access the confused sbi supplied at line 12. We classify this as an
anti-pattern, as an imperfect knowledge of program semantics or changes to it would
open up the possibility for bugs.

Bug Counts. With our sanitizer (Section 4.5.3.1), we discovered 6 mismatches on
data structure operators, 2 cases of empty-list confusion, and 1 case for each of the
other patterns.

4.7 Static Analyzer

This section introduces the static analyzer component of UNCONTAINED, which aims
to identify the container confusion patterns presented in the previous section. We
illustrate the design of our static analyses in Section 4.7.1, their implementation in
Section 4.7.2, and the experimental results in Section 4.7.3.

4.7.1 Design

As anticipated in Section 4.6, our static analyzer aims for the code regions that are
not within easy reach of current dynamic testing solutions. We note, though, that
the reflections and bug patterns we presented involve phenomena, like indirection
via memory, that may be expensive to reason about statically. Also, most of the
bugs found involved inter-procedural flows.

For our analysis to scale to a code base as huge as the Linux kernel while
maintaining satisfying accuracy, we make the following design choices. We cast bug
pattern search to a static information flow analysis problem, relying on def-use
information to track value propagation. The five bug patterns become rules for
an on-demand backward or forward analysis where container_of instances act
as sources or sinks depending on the pattern. We extend def-use chains through
procedure boundaries (as a simplified form of [155]) and model memory as a single,
coarse-grained symbolic location for scalability. We use semantic knowledge of
common data structure manipulations (e.g., list iterators) to model several flows
that involve indirection, enabling static reasoning.

We provide descriptions below for how we encode the five bug patterns as rules
for the information flow analysis. Appendix E.2 contains more rigorous definitions
of what we use as (and do at) sources, sinks, and path-discarding filters.

4.7 Static Analyzer 79

Pattern @. To spot statically incompatible containers, we run a backward analysis
from the pointer supplied to a container_of instance to every operation, if any,
that obtains a pointer to an embedded structure starting from a pointer typed as a
container. If the type (or member field) is incompatible with what container_of is
asked for, we report a confusion.

Static reasoning is limited to instances for which we can infer the container
type, i.e., cases where the code computes the parent structure pointer flowing into
container_of by referencing the member field of the child structure—e.g., with a
&(child.member) pattern. Our static reasoning gives up instead if the code reads
the parent pointer value directly from memory: in these cases, even complex pointer
analyses may be inconclusive due to aliasing, indirection, and other factors.

Pattern @. To spot potential accesses on empty lists, checking only for the use of
dedicated helpers (e.g., 1ist_empty, list_is_head, list_entry_is_head) would
be prone to false positives. In fact, a code may keep track of the list size in a separate
variable and check it before any downcasting; we find this to happen frequently in
the Linux kernel.

We thus conduct a forward analysis from any occurrence of 1ist_{entry, next,
prev, first, last} toany use of the output pointer. If we encounter no conditional
check guarding a use in the control flow, we report a potential confusion.

When reviewing buggy code, we also noted that some code erroneously compares
the assigned pointer to NULL (whereas, when the list is empty, the result would
reference the owning structure). Therefore, we added an analysis that detects such
checks and deems them as incorrect (unless the code did not explicitly initialize the
pointer as such before list iteration).

Pattern €@). Object flows between operations involving container-based data
structures (e.g., insertion and retrieval in a list) are in general hard to reason about
statically, as they involve memory contents manipulation. However, we can rely
on domain knowledge on the identity of the operations to detect cases of container
confusion from inconsistent member selection.

We do a forward analysis from any operation on a data structure type to any
subsequent operation on the same structure (e.g., from 1list_add to list_entry).
If the pointers supplied to both can be determined to be the same but the container
type or field is different, we report a potential confusion.

Pattern @. To detect when an iterator may have outlived its validity and cause
container confusion if dereferenced, we analyze the instances of iterator-related
macros that take part in loops. For each of them, we conduct an intra-procedural
forward analysis to see if the code uses it outside the loop. We deem such a use as
potentially confused if it is not guarded by a conditional check (e.g., using a boolean
variable set by the loop), as developers typically insert one to assess whether the
loop stopped advancing the iterator (i.e., before invalidity).

Pattern @. Confusion cases on containers with contracts are hard to spot in
terms of code manipulations alone. We find it reasonable to assume that, for a given

4.7 Static Analyzer 80

code base, the identity of such container types is known. For the Linux kernel, we
devise an analysis for kobject containers that one may in principle adapt to other
types from other code bases. The analysis comes with a forward and a backward
component.

For each occurrence of the kobject_init_and_add () function, which is designed
to register an object with its contract, we run a backward analysis to identify the
containment relationships of the registered object and collect its ktype contract.

For each contract, we gather what functions of sysfs may be called on the object
by inspecting its related fields. Then, we run a forward analysis from the kobject
argument in each such function, looking for container_of invocations incompatible
with any valid containment identified by the backward component.

4.7.2 Implementation

We implement the general forward and backward information flow analyses and
the rules for patterns @, @, @, and @ as a pass for LLVM IR in 1286 lines of
C++ code. We run it a link time so we can effectively extend def-use chains across
procedure boundaries. In this scenario, though, LLVM would normally merge type
definitions having an identical memory layout: to keep our analyses accurate, we
disabled this behavior by changing ~25 lines of code in the compiler.

The forward analysis starts from an IR value representing a source and follows its
uses. When a use eventually reaches a function call argument, the analysis continues
by seeing the uses of the arguments in the callee, recursively. The analysis also
accounts for uses that concur to the return value of a callee, returning to the caller
for continuing the analysis.

The backward analysis proceeds from a source IR value to its reaching defini-
tion(s). When it meets a function argument, it continues by exploring the code of
each possible caller.

Both analyses stop exploring a path upon reaching a sink or a memory deref-
erencing operation, as we modeled memory as a single location. The rules for the
patterns to check specify sources, sinks, direction of the exploration, and filters (if
applicable) to stop a path exploration early.

As an implementation refinement, for pattern @ we suppress false positives
involving container confusion in functions passed as callbacks for list_sort() or
seq_operations structures. The reason is that the latter come with additional logic
for emptiness checks before invoking the callbacks.

To ease the analysis of the reported confusion cases, we implement a Visual
Studio Code plugin that recovers and presents to the developer the relevant code
locations involved.

For pattern @, when reporting the bug presented in Section 4.3.2, the kernel
maintainers pointed us to a coccinelle script proposed in 2012 by Julia Lawall on
their mailing list to flag uses of iterators after loops. We assume that it had limited
impact because of the high false positive rates. However, since our analysis for @ is
simple and local, coccinelle is a great fit for it. We therefore extended the script in
ways (mainly, with detection of checking logic already in place) that significantly
reduced its false positive rate.

4.7 Static Analyzer 81

4.7.3 Evaluation

Table 4.1. Reports from the static analyzer categorized as False Positives (FP), Anti-
Patterns (AP), and Bugs for each pattern.

Description FP AP Bug
@ Statically Incompatible Containers 72 27 3
@ Empty-list Confusion 19 4 20
® Mismatch on Data Structure Operators 16 8 1
@ Past-the-end Iterator 0 137 56
@ Containers with Contracts 0 3 0

We run our static analyzer on the same kernel code base studied in Section 4.5.3.
Table 4.1 summarizes the findings from a manual analysis of the reported cases
of potential container confusion: we identified 80 bugs, 179 anti-patterns, and 107
false positives. We responsibly disclosed and proposed patches (138 in total with 91
already merged at the time of writing) for all the bugs as well as for the anti-patterns
that can be removed without intrusive program semantics changes.

For the analysis time, we recall that pattern @ employs two rules whereas the
others just one (@ included, as its two analyses run in combination). We measure it
took 33.6 seconds (average of rules) for a rule to process all the container downcasts
in the code that meet the definition of source for it.

We classify a report as a bug when the container confusion is unintended, which
can lead to errors and possibly security-sensitive behavior. We consider as anti-
pattern (AP) those cases where confusion can happen but program semantics prevents
any use of the pointer. We consider as false positive (FP) those cases where pointers
cannot have a confused value but the over-approximation of static analysis fails to
see it.

Pattern @. Reports about Statically Incompatible Containers cases include 3
bugs, 27 anti-patterns, and 72 false positives. This pattern is prone to false positives
(67.3% of the total among all five patterns) due to imprecision of the static analysis:
we found most of them to occur when some backward control flows are unfeasible as
they are guarded by checks on fields carrying explicit type tags®. A similar semantics
is also behind most of the anti-patterns we found. As for the bugs, static checking
identifies the TUN bug from fuzzing that we discussed when presenting the pattern
in Section 4.6, but also a similar variant for TAP socket interfaces.

Pattern @. Reports about Empty-list Confusion cases are the second most nu-
merous: we found 20 bugs (5 from missing checks and 15 from checks against NULL)
and 2 anti-patterns.

For example, we found a container confusion in code that incorrectly checks HID
device drivers reports, affecting all the 9 kernel drivers that rely on it. The bug had

4Tt could be a one-time effort to add such domain knowledge to the checker. However, we found
72 still feasible here for our manual analysis.

4.8 Discussion 82

been present in the kernel for almost 9 years. In other HID driver code, we found
2 use-after-free and 1 NULL pointer dereference bugs. We also found a bug in the
RT scheduler for an incorrect check on the task queue that had been present for 15
years.

The 19 false positives involve lists that cannot be empty due to program semantics,
missing effects of indirect calls (like the sort comparators that we model already),
and implementation limitations for non-nearby conditional checks.

Pattern €. We found a notable bug by looking for pattern Mismatch on Data
Structure Operators cases. The bug affects the function rds_rm_zerocopy_callback(),
which writes a cookie provided by userspace to memory. The function issues a
list_entry() directly on the list_head instead of using list_first_entry().
The code passes the container-confused pointer to a function that finalizes the write.

The function uses confused values to write data to an offset where both are under
userspace control, offering a controlled out-of-bounds (OOB) write primitive. Due
to the container confusion, also an overlapping lock structure gets corrupted in the
process, de-synchronizing it and potentially causing a use after free. The bug had
been present in the kernel for 5 years. As the OOB write does not overlap with
redzones, ongoing continuous fuzzing efforts could not detect it.

Anti-patterns mainly originate from iterating a list with an incorrect type,
sharing a few initial member fields with the intended type. False positives come
from implementation limitations with complex cases of GEP instructions in LLVM
IR and unfeasible control flows from switch-case constructs.

Pattern @. Reports about Past-the-end Iterator are the most numerous in our
results: this is quite expected, being list iteration popular in the kernel. We identify
56 bugs and 137 anti-patterns where the code may use a list iterator without checking
whether it surpassed the end of the data structure.

The most immediate effect of our reporting and patching activity was upgrading
the C standard for the Linux kernel to C11 [83]: this makes it possible to declare
iterators valid only within loops, forcing developers to use (valid) retrieved values in
a safer way. Shortly after, maintainers followed up with a proposal under adoption
for a safer design of list iterators [84].

Pattern @ We conclude by briefly mentioning that our reports from searching
for Containers with Contracts cases uncovered two anti-patterns involving kobject
container confusion in addition to the one discovered by dynamic analysis.

4.8 Discussion

We find that the dynamic and static parts of UNCONTAINED operate synergetically
to expose typically different instances of bugs over large code bases such as the Linux
kernel.

The sanitizer component, thanks to precise runtime information, offers high
accuracy by incurring only few false positives in our tests. This wealth of information
also allows it to detect bugs that are out of reach of the static analyzer due to the

4.9 Related Work 83

latter’s inherent under-approximation (e.g., for cases of memory indirections that
we cannot recover via domain knowledge). This can be seen in the limited overlap
in the bugs found: only 2 of the 11 bugs found dynamically occur in the reports of
the static analyzer.

On the other hand, the static analyzer succeeds in its intended goals, revealing
a large number of bugs (80) originating often in kernel areas that the dynamic
experiments did not stress sufficiently or at all. These include virtual drivers, ptrace
facilities, the RT scheduler, and the kernel components of NFS and KVM, among
others. Being a static analysis, the main shortcoming of the approach when it comes
to analyzing reports is the lack of actionable test cases to reach the involved code.
While this is an inherently hard problem for any static analysis, the patterns that
we propose are quite intuitive, greatly helping manual analysis.

To improve the reach of the static analyzer, precise modeling of memory may be
an area worth examining. We opted not to use pointer analyses as accurate ones are
expensive on large programs [344] and features desirable in this context like flow-
and context-sensitivity would increase their costs considerably. Also, they would
be unaware of the many indirect control transfers to functions caused by userland
activities. We leave this investigation to future work.

Similarly, it would be interesting to explore directed fuzzing [43] and/or fuzzers
specialized for certain kernel areas (Section 4.6) to reach functions/regions where
static analyses report potential container confusion cases. Doing so may enable both
their in-depth exploration and input generation for some reports, but we are not
aware of any fuzzing system that one may use at the present time to explore this
angle.

4.9 Related Work

This section covers literature on type confusion, sanitization, and static analysis
that the research in this chapter relates to.

Type Confusion Detection. Most existing type confusion detectors are limited
to C++. UBSan [239], for instance, replaces static casts with dynamic casts in
C++ to expose bugs. CaVeR [229], TypeSan [152], HexType [195], and Bitype [287]
are specialized to find type confusion for C++ classes by managing runtime type
metadata and performing checks on cast operations. CASTSan [269] efficiently
detects type confusion leveraging C++ virtual tables, but is limited to polymorphic
classes only. While all other existing approaches rely on dynamic analysis, TCD [407]
uses a field-, context- and flow sensitive pointer analysis to detect type-confused
C++ code.

libcrunch [200] and EffectiveSan [113] support C programs. However, both
approaches rely on intercepting object allocations and binding them with their
top-level allocation type. In practice, this would be hard, if not impossible, to collect
in projects with the complexity of a kernel. For this reason, the typed allocator
mitigation in XNU resorted to manual annotations in allocations [121]. Our approach
overcomes the need of both allocation-time type inference and manual annotations.

4.10 Conclusion 84

Speculative Type Confusion. Previous work has explored speculative type
confusion while dealing with objects of multiple types. Confusion in the speculative
domain fundamentally differ from non-speculative one for observability and/or
explainability. Kasper [197] scans the Linux kernel for arbitrary speculative gadgets.
It shows how the current list iterator implementation is subject to speculative
container confusion when dealing with the list heads if the terminating condition is
mispredicted. Kirzner et al. [207] focus on speculative type confusion in the Linux
kernel. The chapter highlights possible type confusion originating from eBPF code,
compiler-introduced vulnerabilities, and polymorphic types. BHI [30] leverages a
speculative type confusion in eBPF code in their exploit. FPVI [298] and Spook.js [2]
exploit speculative type confusion in JavaScript engines.

Other Sanitizers. Similarly to ASan [320], several sanitizers rely on redzones:
Purify [157], Memcheck [322], Dr. Memory [56] and LPC [156] leverage them to
detect memory corruptions in the form of spatial and temporal safety violations.

MSan [340] targets reads from uninitialized memory using a shadow map mecha-
nism. Other sanitizers, such as Undangle [58], FreeSentry [396], DangNull [228], and
DangSan [363] detect dangling pointers that cause use-after-free errors.

For boundary identification, other techniques encode tracking metadata within
pointers, as with low-fat pointers [114,223] and delta pointers [219]. For example,
our approach could replace redzones with low-fat pointers on supported systems.

Static Analyzers. We conclude by mentioning a few popular static analysis tools
for the Linux kernel. Coccinelle [284] is pervasively used as a program matching and
transformation tool. In addition to its use for refactoring and code hardening, it also
has provisions to find intra-procedural bugs. Sparse [55] uses Linux kernel-specific
annotations to perform few specialized checks. Smatch [54] followed in its footsteps
to build a generic static analysis framework for several kernel bug types; it can only
conduct intra-procedural dataflow analyses.

4.10 Conclusion

We presented a sanitization scheme for container confusion designed as a compiler-
based runtime checker. For demonstration, we implemented the sanitizer for the
Linux kernel, finding 11 bugs, which were undetected by previous work. Those bugs
have often existed in the kernel for several years. Based on our results, we identified
common bug patterns and used those categories to build a tailored static analyzer
to discover bugs in code often unreachable by dynamic analysis. With our static
analyzer, we unveiled 78 additional, previously undiscovered bugs. We conclude that
bad downcasting is not only problematic in object-oriented programming languages
but also occurs in large C projects, with serious security impact.

We have disclosed and proposed possible fixes for all found bugs and relevant
anti-patterns to the Linux kernel mailing list, with a total of 143 patches and 94
already merged.

4.10 Conclusion

85

By extending the classes of bugs static and dynamic analysis may find, we
focused on improving software against malicious inputs that may cause mem-
ory corruption. However, the absence of vulnerabilities does not guarantee
the security of a software program. A prototypical example is cryptographic
software, which needs stronger guarantees against attackers that may infer
secret information the software is computing on. Side-channel attacks may
leverage noticeable differences in how software executes on a given hardware
to disclose secret information. In the next chapter, we design and develop
a framework to automatically mitigate side-channel vulnerabilities during
compilation.

Chapter 5

Automatic Side-Channel
Resistance

5.1 Introduction

Protecting the confidentiality of security-sensitive information is a key requirement
of modern computer systems. Yet, despite advances in software security engineering,
this requirement is more and more challenging to satisfy in face of increasingly
sophisticated microarchitectural side-channel attacks. Such attacks allow adversaries
to leak information from victim execution by observing changes in the microarchitec-
tural state (e.g., cache eviction), typically via timing measurements (e.g., memory
access latency).

Such attacks have been shown practical in the real world with or without the assis-
tance of CPU bugs. Examples in the former category are transient execution attacks
such as Spectre [210], Meltdown [236], L1TF [358], and MDS [59,314,368]. Examples
in the latter category are traditional cache attacks (e.g., FLUSH+RELOAD [394] and
PRIME-+PROBE [281]) against security-sensitive software victims such as crypto
libraries. While the former are the focus of many mitigation efforts by vendors,
for the latter the burden of mitigation lies entirely on the shoulders of software
developers [185].

In theory, this is feasible, as side-channel attacks leak secrets (e.g., crypto keys)
by observing victim secret-dependent computations (e.g., branch taken or array
indexed based on a crypto key bit) via microarchitectural measurements. Hence,
eliminating explicit secret-dependent code/data accesses from software—a practice
generally known as constant-time programming [31]—is a viable avenue for mitigation.
In practice, removing side-channel vulnerabilities from software is a daunting and
error-prone task even for skilled developers. Not surprisingly, even production side
channel-resistant implementations are riddled with flaws [90,333].

To address this problem, much prior work has proposed solutions to automatically
transform programs into their constant-time equivalents or variations [65,134,135,
171,203,237,238,247,253,265, 327,339, 343,370,381, 382,401-404]. Unfortunately,
even the most recent solutions [301,332,389] offer limited security or compatibility
guarantees, hindering their applicability to real-world programs.

In this chapter, we introduce CONSTANTINE, a compiler-based system for the

5.1 Introduction 87

automatic elimination of side-channel vulnerabilities from programs. The key idea
is to explore a radical design point based on control and data flow linearization
(or CFL and DFL), where all the possible secret-dependent code/data memory
accesses are always executed regardless of the particular secret value encountered.
The advantage of this strategy is to provide strong security and compatibility
guarantees by construction. The nontrivial challenge is to develop this strategy in a
practical way, since a straightforward implementation would lead to program state
explosion. For instance, naively linearizing secret-dependent branches that guard
loop exits would lead to unbounded loop execution. Similarly, naively linearizing
secret-dependent data accesses by touching all the possible memory locations would
lead to an unscalable solution.

Our design is indeed inspired by radical and impractical-by-design obfuscation
techniques such as the M/o/Vfuscator [72], which linearizes the control flow to
collapse the program’s control-flow graph into a single branchless code block with
only data movement (i.e., x86 mov) instructions [206]. Each mov instruction uses an
extra level of indirection to operate on real or dummy data depending on whether
the code is running the intended side of a branch or not.

Revisiting such design point for side-channel protection faces several challenges.
First, linearizing all the branches with mov-only code hinders efficient code generation
in modern compilers and leads to enormous overheads. To address this challenge,
CONSTANTINE only linearizes secret-dependent branches pinpointed by profiling
information, allows arbitrary branchless instructions besides mov, and uses efficient
indirect memory addressing to allow the compiler to generate efficient code. Second,
the M/o/Vfuscator only linearizes the control flow and encodes branch decisions in
new data flows, a strategy which would only multiply the number of secret-dependent
data accesses. To address this challenge, CONSTANTINE couples CFL with DFL to
also linearize all the secret-dependent data flows (generated by CFL or part of the
original program).

Finally and above all, M/o/Vfuscator does not address state explosion. For
example, it linearizes loop exits by means of invalid mov instructions, which generate
exceptions and restart the program in dummy mode until the original loop code
is reached. Other than being inefficient, this strategy originates new side channels
(e.g., exception handling) that leak the number of loop iterations. To address state
explosion, CONSTANTINE relies on carefully designed optimizations such as just-
in-time loop linearization and aggressive function cloning. The former linearizes
loops in the same way as regular branches, but adaptively bounds the number
of iterations based on the original program behavior. The latter enables precise,
context-sensitive points-to analysis which can strictly bound the number of possible
targets at secret-dependent data accesses.

Collectively, our optimizations produce a scalable CFL and DFL strategy, while
supporting all the common programming constructs in real-world software such as
nested loops, indirect function calls, pointer-based accesses, etc. Our design not only
addresses the state explosion problem, but also leads to a system that outperforms
prior comprehensive solutions in terms of both performance and compatibility, while
also providing stronger security guarantees. For example, we show CONSTANTINE
yields overheads as low as 16% for cache-line attacks on standard benchmarks.
Moreover, to show CONSTANTINE provides the first practical solution for automatic

5.2 Background 88

side-channel resistance for real-world software, we present a case study on the
wolfSSL embedded TLS library. We show CONSTANTINE-protected wolfSSL can
complete a modular multiplication of a ECDSA signature in 8 ms, which demonstrates
CONSTANTINE’s automated approach can effectively handle a fully-fledged real-word
crypto library component for the very first time.

Contributions

To summarize, this chapter proposes the following contributions:

e We introduce CONSTANTINE, a system for the protection of software from side
channels.

e We show how CONSTANTINE can automatically analyze and transform a target
program by efficiently applying control and data flow linearization techniques.

¢ We implement CONSTANTINE as a set of compiler transformations for the
LLVM toolchain. CONSTANTINE is open source (available at https://github
.com/pietroborrello/constantine).

¢ We evaluate CONSTANTINE on several standard benchmarks, evidencing its
performance advantage against prior solutions. We also present a case study on
the wolfSSL library to show its practical applicability on real-world software.

5.2 Background

Microarchitectural side channels generally allow an adversary to infer when and
where in memory a victim program performs specific code/data accesses. And
by targeting secret-dependent accesses originating from secret-dependent control
and data flows in the original program, an adversary can ultimately leak secret
data. Constant-time programming is a promising solution to eliminate such explicit
secret-dependent accesses from programs, but state-of-the-art automated solutions
are severely limited in terms of security, performance, and/or compatibility.

Control Flow Secret-dependent control flows (e.g., code branching on a crypto
key bit) induce code accesses that microarchitectural attacks can observe to leak
secrets. Early constant-time programming solutions only attempted to balance out
secret-dependent branches with dummy instructions (e.g., with cross-copying [3]) to
mitigate only simple execution time side-channel attacks [250]. Molnar et al. [265]
made a leap forward with the program counter security model (PC-security), where
the trace of secret-dependent executed instructions is the same for any secret value.

Prior work has explored two main avenues to PC-security. The first avenue
is a form of transactional evecution [301], which always executes both sides of
every secret-dependent branch—hence a real and a decoy path—as-is, but uses
a transaction-like mechanism to buffer and later discard changes to the program
state from decoy paths. This approach provides limited security guarantees, as it
introduces new side channels to observe decoy path execution and thus the secret.
Indeed, one needs to at least mask exceptions from rogue operands of read/write

https://github.com/pietroborrello/constantine
https://github.com/pietroborrello/constantine

5.2 Background 89

instructions on decoy paths, introducing secret-dependent timing differences due
to exception handling. Even when normalizing such differences, decoy paths may
perform read/write accesses that real paths would not make, introducing new decoy
data flows. An attacker can easily learn data-flow invariants on real paths (e.g., an
array always accessed at the same offset range) and detect decoy path execution
when the observed accesses reveal invariant violations. Also, this approach alone
struggles with real-world software compatibility. For instance, it requires loops to
be completely unrolled, which leads to code size explosion for nested loops and for
those with large trip count.

Another avenue to PC-security is predicated execution [82], which similarly
executes both real and decoy paths, but only allows the instructions from the real
path to update the program state. Updates are controlled by a predicate that
reflects the original program branch condition and take the form of a constant-time
conditional assignment instruction (e.g., cmov on x86) [82]. When on a decoy path,
read/write operations get rewired to a single (conditionally assigned) shadow address.
However, such decoy (shadow) data flows can again introduce new side channels
to leak the decoy nature of a path [74,82]. Moreover, this form of predication
hampers the optimization process of the compiler, forcing the use of pervasive cmov
instructions and constraining code transformation and generation. Some more recent
solutions attempt to generate more optimized code by allowing some [332] or all [389]
accesses on unmodified addresses on decoy paths. However, this hybrid strategy
mimics transactional execution behavior and is similarly vulnerable to side-channel
attacks that detect data-flow invariant violations on decoy paths. In addition,
existing solutions face the same compatibility issues of transactional solutions with
real-world code.

Unlike prior solutions, CONSTANTINE’s control-flow linearization (CFL) exe-
cutes both real and decoy paths using an indirect memory addressing scheme to
transparently target a shadow address along decoy paths. This strategy does not
force the compiler to use cmov instructions and yields more efficient generated code.
For instance, a CONSTANTINE-instrumented wolfSSL binary contains only 39% of
cmov instructions (automatically emitted by the code generator, as appropriate)
compared to predicated execution, resulting in a net CFL speedup of 32.9%. As
shown later, the addition of data-flow linearization (DFL) allows CONSTANTINE to
operate further optimizations, eliminating shadow address accesses altogether as well
as the corresponding decoy data flows. CONSTANTINE is also compatible with all the
common features in real-world programs, including variable-length loops bound by
means of just-in-time linearization and indirect calls handled in tandem with DFL.

Data Flow Data-dependent side channels have two leading causes on modern
microarchitectures. Some originate from instructions that exhibit data operand-
dependent latencies, e.g., integer division [82] and some floating-point instruc-
tions [12] on x86. Simple mitigations suffice here, including software emulation [13]
(also adopted by CONSTANTINE), compensation code insertion [74], and leveraging
hardware features to control latencies [82].

The other more fundamental cause stems from secret-dependent data flows
(e.g., an array accessed at an offset based on a crypto key bit), which induce data

5.2 Background 920

accesses that microarchitectural attacks can observe to leak secrets. Hardware-based
mitigations [381] do not readily apply to code running on commodity processors.
To cope with such leaks, existing compiler-based solutions have explored code
transformations [389] and software-based ORAM [301].

SC-Eliminator [389] transforms code to preload cache lines of security-sensitive
lookup tables, so that subsequent lookup operations can result in always-hit cache
accesses, and no secret-dependent time variance occurs. Unfortunately, since the
preloading and the secret-dependent accesses are not atomic, a non-passive adversary
may evict victim cache lines right after preloading and later observe the secret-
dependent accesses with a cache attack. Cloak [149] adopts a similar mitigation
approach, but enforces atomicity by means of Intel TSX transactions. Nonetheless,
it requires manual code annotations and can only support short-lived computations.
Moreover, these strategies are limited to standard cache attacks and do not consider
other microarchitectural attacks, including those that operate at the subcacheline
granularity [262,395].

Raccoon [301] uses Path ORAM (Oblivious RAM) [339] as a shortcut to protect
data flows from attacks. ORAMs let code conceal its data access patterns by
reshuffling contents and accessing multiple cells at each retrieval [143]. Unfortunately,
this strategy introduces substantial run-time overhead as each security-sensitive data
access results in numerous ORAM-induced memory accesses.

Unlike prior solutions, CONSTANTINE’s data-flow linearization (DFL) eliminates
all the explicit secret-dependent data flows (generated by CFL or part of the original
program) by forcing the corresponding read/write operations to touch all their
target memory locations as computed by static points-to analysis. While such
analyses are known to largely overapproximate target sets on real-world programs,
CONSTANTINE relies on an aggressive function cloning strategy to enable precise,
context-sensitive points-to analysis and strictly bound the number of possible targets.
For instance, a CONSTANTINE-instrumented wolfSSL binary using state-of-the-art
points-to analysis [344] yields an average number of target objects at secret-dependent
data accesses of 6.29 and 1.08 before and after aggressive cloning (respectively), a
net reduction of 83% resulting in precise and efficient DFL. Unlike prior solutions
that are limited to array accesses, CONSTANTINE is also compatible with arbitrary
pointer usage in real-world programs.

Decoy-path side channels We use Listing 5.1 to show how existing constant-time
protection solutions struggle to maintain both memory safety and real execution
invariants along decoy paths, ultimately introducing new side channels for attackers
to detect decoy paths.

The if condition at line 6 guards the statement at lines 7-9 (two read operations
followed by one write operation). Let us consider the case 4096 <= secret < 8192. All
the state-of-the-art solutions [82,301,332,389] would also run the corresponding decoy
path (statements inside the condition, normally executed only when secret < 4096),
but with different code transformations. The approach of Coppens et al. [82] rewires
the memory accesses at lines 7-9 to touch a shadow address, therefore allowing an
attacker to detect decoy path execution by observing (three) accesses to the shadow
address. SC-Eliminator [389] preloads both tables before executing the branch, but

5.3 Threat Model 91

char last_result;
char tableA[8192];
char tableB[4096];

char secret_hash(unsigned int secret) {
if (secret < 4096) {
register char tmp = tableB[secret];

tmp = tableA[secret];
last_result = tmp;
}

return last_result;

}

Listing 5.1. An example function vulnerable to control and data flow side channels.

executes the read /write operations at lines 7-9 with unmodified addresses, introducing
a decoy out-of-bounds read at line 7. Such memory safety violation might cause
an exception if the memory after tableB is unmapped, which, since the exception
is left unmasked, would terminate the program and introduce a termination-based
decoy-path side channel. Raccoon [301] closes such termination side channels by
masking the exception, but this strategy also introduces an exception handling-based
decoy-path side channel. The approach of Soares et al. [332], on the other hand,
replaces such an unsafe read access with an access to a shadow address, which
however introduces the same decoy-path side channel discussed for Coppens et
al. [82].

Finally, even assuming no exception is caused by the out-of-bounds read at line
7 and that we can even eliminate the out-of-bounds behavior altogether without
introducing other side channels, an attacker can still trivially detect decoy-path
execution by side channeling the read at line 8. The shadow access of Coppens
et al. [82] would leak decoy-path execution as discussed, but so will all the other
solutions [301,332,389], which would allow an in-bound access at offset 4096 <=
secret < 8192 to tableA. Such access would never happen during real execution,
breaking a program invariant on a decoy path and introducing a decoy data-flow
side channel an attacker can use to again detect decoy-path execution.

In contrast, CONSTANTINE’s combined CFL/DFL strategy would instead ensure
the very same data accesses during real or decoy execution, preserving program
invariants and eliminating decoy-path side channels by construction. Table 5.1
provides a detailed comparison between CONSTANTINE and prior solutions.

5.3 Threat Model

We assume a strong adversary able to run arbitrary code on the target machine
alongside the victim program, including on the same physical or logical core. The
adversary has access to the source/binary of the program and seeks to leak secret-
dependent computations via microarchitectural side channels. Other classes of side
channels (e.g., power [235]), software (e.g., external libraries/OS [53]) or hardware
(e.g., transient execution [64,318]) victims, and vulnerabilities (e.g., memory errors or
other undefined behaviors [380]) are beyond the scope of constant-time programming
and subject of orthogonal mitigations. We further make no restrictions on the

5.4 Constantine

92

Table 5.1. Technical, security, and compatibility features from state-of-the-art solutions vs.

CONSTANTINE.

Feature Coppens et al. Raccoon SC-Eliminator Soares et al. CONSTANTINE
control flows predicated transactional hybrid hybrid linearization
data flows Path ORAM preloading - linearization
loop handling strategy unroll unroll unroll unroll just-in-time
integration with compiler backend IR level IR level IR level IR level

sensitive region identification

user annotations

annot. + static analysis

annot. + static analysis

user annotations

profiling (taint)

decoy-path side channels
fix variable-latency instruc-
tions (e.g., div)

shadow accesses

no

read/write accesses

sw emulation

read/write accesses

no

shadow, safe read/write accesses

no

no

sw emulation

threat model code code+data code+data*® code code+data
variable-length loops no no decoy paths till bound no yes
indirect calls no - yes
recursion fixed-depth** fixed-depth - - yes
spatial safety preserved yes no no yes yes

supported data pointers arrays arrays arrays no restrictions

*

** unimplemented cache line with preloading

microarchitectural side-channel attacks attempted by the adversary, ranging from
classic cache attacks [281,394] to recent contention-based attacks [6,147]. With
such attacks, we assume the adversary can observe the timing of arbitrary victim
code/data accesses and their location at the cache line or even lower granularity.

5.4 Constantine

This section details the design and implementation of CONSTANTINE. We first
outline its high-level workflow and building blocks.

5.4.1 Overview

CONSTANTINE is a compiler-based system to automatically harden programs against
microarchitectural side channels. Our linearization design pushes constant-time
programming to the extreme and embodies it in two flavors:

1. Control Flow Linearization (CFL): we transform program regions influenced
by secret data to yield secret-invariant instruction traces, with real and decoy
parts controlled by a dummy execution abstraction opaque to the attacker;

2. Data Flow Linearization (DFL): we transform every secret-dependent data
access (including those performed by dummy execution) into an oblivious
operation that touches all the locations such program point can possibly
reference, leaving the attacker unable to guess the intended target.

CFL and DFL add a level of indirection around value computations. The CFL
dummy execution abstraction uses it to implicitly nullify the effects of instructions
that presently execute as decoy paths. DFL instead wraps load and store operations
to induce memory accesses for the program that are secret-invariant, also ensuring
real and decoy paths access the same collections of objects.

Linearizing control and data flows represents a radical design point with obvious
scalability challenges. To address them, CONSTANTINE relies on carefully designed
optimizations. For control flows, we rely on a M/o/Vfuscator-inspired indirect

5.4 Constantine 93

memory addressing scheme to legalize decoy paths while allowing the optimizer to
see through our construction and generate efficient code. We also propose just-in-time
loop linearization to efficiently support arbitrary loops in real-world programs and
automatically bound their execution based on the behavior of the original program
(i.e., automatically padding the number of iterations based on the maximum value
observed on real paths).

For data flows, we devise aggressive function cloning to substantially boost
the precision of static memory access analysis and minimize the extra accesses
required by DFL. To further optimize DFL, we rely on an efficient object metadata
management scheme and on hardware-optimized code sequences (e.g., AVX-512) to
efficiently touch all the necessary memory locations at each secret-dependent data
access. We also exploit synergies between control-flow and data-flow handling to
(i) eliminate the need for shadow accesses on decoy paths (boosting performance
and eradicating problematic decoy data flows altogether); (ii) handle challenging
indirect control flows such as indirect function calls in real-world programs.

To automatically identify secret-dependent code and data accesses, we rely on
profiling information obtained via dynamic information flow tracking and propagate
the dependencies along the call graph. To analyze memory accesses, we consider
a state-of-the-art Andersen-style points-to analysis implementation [344] and show
how aggressive function cloning can greatly boost its precision thanks to newly
added full context sensitivity.

From a security perspective, CFL ensures PC-security for all the instructions
that operate on secret data or whose execution depends on it; in the process it
also replaces variable-latency instructions with safe software implementations. DFL
provides analogous guarantees for data: at each secret-dependent load or store
operation, the transformed program obliviously accesses every potentially referenced
location in the execution for that program point and is no longer susceptible to
microarchitectural leaks by design.

Figure 5.1 provides a high-level view of the CFL, DFL, and support program
analysis components behind CONSTANTINE. Our techniques are general and we imple-
ment them as analyses and transformation passes for the intermediate representation
(IR) of LLVM.

5.4.2 Control Flow Linearization

With control flow linearization (CFL) we turn secret-dependent control flows into
straight-line regions that meet PC-security requirements by construction [265],
proposing just-in-time linearization for looping sequences. We also make provisions
for instructions that may throw an exception because of rogue values along decoy
paths, or yield variable latencies because of operand values.

CFL: The sequence of secret-dependent instructions that the CPU executes is
constant for any initial input (PC-security) and data values do not affect the latency
of each such instruction.

With this invariant, only data access patterns can then influence execution time,
and DFL will make them insensitive to secret input values. We assume that an oracle

5.4 Constantine 94

CODE GENERATION

secret data
LLVM @
INFORMATION
FLOW TRACKING

POINTSTO | .
ANALYSIS

taken ¢ old_taken 8& c

Leak-free
binary

ASZ: V = mallocO) [
“[As1: global g

" S Control Flow Data Flow
Linearization (CFL) Linearization (DFL) .
CODE ANALYSES NORMALIZED LLVM IR IR-LEVEL CODE TRANSFORMATIONS PROGRAM EXECUTION

Figure 5.1. Architecture of CONSTANTINE: code analyses, CFL & DFL transformations,
and run-time object metadata.

(the taint analysis of Section 5.4.4.1) enucleates which control-flow transfer decisions
depend on secret data. Such information comprises if-else and loop constructs
and indirect-call targets. For each involved code region, we push the linearization
process in a recursive fashion to any nested control flows (i.e., if-else branches, loops,
and function calls), visiting control-flow graphs (CFGs) and call graph edges in a
post-order depth-first fashion. By doing so we avoid leaks from decoy paths when
executing secret-independent inner branches in a protected region.

5.4.2.1 Dummy Execution

Each linearized region holds a “taken” predicate instance that determines if the
original program would execute it (real path) or not (decoy path) under the current
program state. We incrementally update the predicate with a new instance at every
control-flow decision that guards the region in the original program, and let the
compiler use the previous incoming instance upon leaving the region. The predicate
backs a dummy execution indirection abstraction where we let decoy paths execute
together with real paths, and use the taken predicate to prevent that visible effects
from decoy paths may pollute the program state.

The key to correctness is that we can safely allow decoy paths to make local
computations (i.e., assign to virtual registers in the IR), as long as their values do
not flow into memory. For memory operations, each pointer expression computation
selects an artificial 1 value when in dummy execution. DFL primitives wrap every
load and store instruction and make both real and decoy paths stride the same
objects thanks to points-to metadata associated with the memory operation. Upon
leaving a region, local values that the program may use later (i.e. live virtual
registers) undergo a selection step to pick values from real paths at merge points.

The key to efficiency is using a selection primitive that is transparent for the
optimizer thanks to indirection. As we observed in Section 5.2, the cmov selector
typical of predicated execution constrains the behavior of the optimizer during code
generation. We leverage the indirection on taken to design selection primitives based
on arithmetic and logic operations that can instead favor optimizations.

Let us consider the pointer assignment ptr = taken ? p : L of Figure 5.1. By
modeling taken as an integer being 1 on real paths and 0 on decoy ones, and by
using NULL to represent | for DFL, the selection becomes ptr = taken * p. DFL
helpers will prevent NULL accesses and deem them as from decoy paths: those
cannot happen on real paths since, like prior literature [301], we work on error-

5.4 Constantine 95

free programs. This constant-time multiplication-based scheme unleashes many
arithmetic optimizations (e.g., global value numbering [308], peephole [4]) at the IR
and backend level, bringing a net CFL speedup of 32.9% in wolfSSL over using the
cmov approach. Appendix F.1 details other primitives that we evaluated.

Selection may be needed for (¢) compiler temporaries too, as we will detail in
Section 5.4.2.3. Unlike memory addresses, both incoming values may be arbitrary,
allowing for more limited optimization: for them we use the select IR instruction
and let LLVM lower it branchlessly as it sees fit (including an x86 cmov).

Hereafter, we use ct_select to refer to a constant-time selection of any values,
but we inline the logic in the IR in the implementation.

5.4.2.2 Compiler IR Normalization

CONSTANTINE takes as input the intermediate representation (IR) produced for the
program by the language-specific compiler frontend. We assume that the IR comes
in static single assignment (SSA) form [308] and that the CFG of every function
containing regions to transform is reducible. The code can come in already-optimized
form (e.g., -02, -03 settings).

We apply a number of normalization passes that simplify later transforma-
tions with the ultimate goal of having single-entry, single-exit regions as unit of
transformation, similarly to [389].

We use existing LLVM passes to lower switch constructs into if-else sequences,
and to unify multiple function exit points into a single one (for abort-like sequences
that do not fall through, we add artificial CFG edges to the exit node). As we work
on error-free programs, we replace exception-aware invoke statements with normal
calls. We also turn indirect calls into if-else sequences of direct calls using points-to
information (Section 5.4.4.2), guarding each direct call with a pointer comparison
on the target.

We then massage the CFG using standard compiler techniques [4] so that it
results into a graph composed only of single-entry, single-exit regions: this will hold
for all branches and loop constructs in the IR. This normalized IR is the input for
the taint oracle of Section 5.4.4.1.

5.4.2.3 Branch Linearization

We can now detail how branch linearization operates and its orchestration with
dummy execution. Under the single-entry, single-exit structural assumption from IR
normalization, for a conditional construct of the likes if (cond) then {A} else {B},
we note that its exit CFG node post-dominates both the “then” and “else” regions
of the branch, and is dominated by the entry node by construction. In SSA form,
¢-nodes select incoming path-sensitive values. To linearize a conditional construct
we:
1. remove the conditional branch, unlinking blocks A and B;

2. replace in A every pointer expression computation with a conditional assign-
ment ct_select(cond, ptr, L);

3. replace similarly in B, using the condition negated (!cond);

5.4 Constantine 96

to = <incoming ’taken’ predicate>
t1 = Couter && to
if (couter) { ptri1 = ct_select(ty, &v[2], 1)
b1 = vI[2] b1 = ct_load(ptri, DFLy,)
} else { Ti—else = !Couter && to
if (cinner) { t2 = Cimner && tTi—cise
by = v[0] ptr2 = ct_select(ts, &vI[0], L)
} else { b2 = ct_load(ptrz, DFLy,)
bs = 0 to_cise = !Cimner && ti—_eise // unused
} bs = 0
bimer = ¢(b2,b3) bimer = ct_select (Cimer, b2, b3)
} by = ct_select (Couters b1, Dinner)
by = ¢(b1,Dinner) ptrs = ct_select(to, &vI[1], L)
v[1] = by ct_store(ptrs, bs, DFLgtore;)
(a) Original code (b) After linearization

Figure 5.2. Linearization and dummy execution.

4. wrap memory accesses with DFL ct_{load, store} primitives, supplying the
DFL metadata for the operation (Section 5.4.3);

5. replace each ¢-node vy = ¢(v4,vp) in the exit block (which assigns virtual
register vg according to whether A or B executed) with a conditional assignment
ct_select(cond,va,vp);

6. merge (entry, A, B, exit) to form a single block, in this order.

We thus “sink” cond to conditionally assign pointers (L for decoy paths) and
virtual registers that outlive the region. Our transformation preserves the SSA form
and can always be applied locally.

We can now add the dummy execution idea to the picture. Without loss of
generality, let us consider two nested if-else statements that possibly take part in a
larger linearized region as in Figure 5.2. When reaching the outer if construct, the
program sees a taken predicate instance tg that determines whether the execution
reached the construct as part of a real (taken = true) or decoy computation.

Inside a region, IR instructions that assign virtual registers do not need to
know tg. Path-sensitive assignments of live-out values from a region, such as bipner,
check the linearized conditions (cipper in this case). Memory-related instructions see
instead their pointer expressions conditionally assigned according to some t; taken
instance. Those instances are updated upon entering the enclosing code block in
the (original) program to reflect the combination of control-flow conditions with the
incoming taken predicate.

5.4.2.4 Loop Linearization

To cope with the practical requirements of real-world code, with CONSTANTINE we
explore a just-in-time approach for the linearization of loops. Let us consider the
following secret-sensitive fragment, taken from a wolfSSL function that computes
x/R ==z (mod N) using a Montgomery reduction:

5.4 Constantine 97

_c = c + pa;
tmpm = a->dp;
for (x = 0; x < pa+l; x++)
*tmpm++ = *x_c++;
for (; x < oldused; x++) // zero any exzcess digits on
*tmpm++ = 0; // destination that we didn’t write to

The induction variable x depends on secret data pa, outlives the first loop, and
dictates the trip count of the second loop. Prior solutions struggle with each of
these aspects, as well as with continue/break statements we found in wolfSSL. For
the secret-dependent trip count issue, some [389] try to infer a bound and pad the
loop with decoy iterations, then unroll the loop completely. However, high trip
counts seen at run time or inaccurate bound predictions make unrolling immediately
impractical due to code bloat.

In CONSTANTINE we design a new approach to handle loops that avoids unrolling
and supports full expressivity for the construct. The key idea is to flank the normal
trip count of a loop with an own CFL induction variable—dubbed ¢ idz next—and
let such variable dictate just-in-time how many times that loop should execute.

base:
base: ipase = O
ipase = O body:
body: icer = ¢p(base: ipase, bOdy: ipoay)
icer = ¢(base: ipases irea1 = ¢(base: undef, body: iout)
body: iboay) ibody = dcurtl
[...1 iow= ct_select (taken, ipody, irea1)
ibody= icur+1 [.]
[...] cond = ... // exit loop?
cond = ... // exit loop? cfl_cond = ... // CFL owerride
br cond, out, body br cfl_cond, out, body
out: out :
X = ipogy X = iout
(a) Original code (b) After linearization

Figure 5.3. Linearization with local variables outliving loops.

After IR normalization, a loop is a single-entry, single-exit region: its exit block
checks some condition cond for whether the program should leave the loop or take the
back-edge to the loop body. Note that break/continue statements are just branches
to the exit node and we linearize them as in Section 5.4.2.3. Before entering the
loop we set ¢_idz:= 0, and modify the exit block in such a way that the program
still makes the original cond computation, but uses instead the current ¢_idz value
to decide whether to leave the loop.

Say that we expect the program to execute the loop no more than k times (we
address loop profiling in Section 5.4.4.1). At every iteration our exiting decision
procedure increments ¢_idx by 1 and faces:

1. taken = true A cond = false. The program is on a real path and wishes to take
the back-edge to the body: we allow it;

5.4 Constantine 98

2. taken=trueA cond=true. The program is on a real path and wishes to exit the
loop: if ¢_idz = k we allow it, otherwise we enter dummy mode (taken:= false)
and the program will perform next k— ¢_ idx dummy iterations for PC-security;

3. taken = false. We make the program leave the loop when ¢ idz = k, and take
the back-edge otherwise.

Note that for (3) we do not use the value of cond, as it can go rogue along decoy
paths, but we still read it for the sake of linearization. Additionally, during (1) we
validate the prediction of the oracle: whenever real program paths wish to iterate
more than k£ times, we adaptively update k allowing the loop to continue, and use
the k" seen on loop exit as the new bound when the program reaches the loop again.
The handling of this comparison is also linearized.

Nested loops or linearized branches in loop bodies pose no challenge: we in-
crementally update the taken predicate and restore it across regions as we did for
nested branches in Section 5.4.2.3 and Figure 5.2.

Let us resume the discussion of the code fragment. As variable x outlives the
first loop, we should prevent decoy paths from updating it for the sake of correctness.
If the compiler places x in memory, the IR will manipulate it using load and store
instructions, and the dummy execution abstraction guarantees that only real paths
can modify it. If instead it uses a virtual register v for performance, we flank it with
another register v’ conditionally assigned according to taken, and replace all the
uses of v as operand in the remainder of the CFG with v’. Figure 5.3 shows this
transformation with ipoqy and ieue: decoy paths keep modifying ipoqy for the sake
of PC-security, but do not pollute the program state. Thanks to this design, we do
not demote v to memory storage, which could harm performance especially for tight
loops, nor we constrain the optimizer.

5.4.2.5 Operand Sanitization

As last step, we safeguard computations that could cause termination leaks from
rogue values along decoy paths. In our design, this may happen only with divisions
instructions receiving zero as divisor value. In Section 5.2 we noted that x86 integer
division is also subject to variable latencies from operand values. We address both
issues via software emulation, replacing *div and *rem LLVM instructions with
subroutines that execute in constant-time, and for *div are also insensitive to rogue
values.

5.4.2.6 Code Generation

Our CFL design poses no restrictions on code optimization as well as code generation
operated in the backend. The optimizer can transform CFL-generated indirect mem-
ory references by means of optimizations such as common subexpression elimination
and the code generator can lower such references using the most efficient patterns
for the target architecture (including cmov instructions on occasion). However, we
need to prevent the code generation process from inadvertently adding branches in
branchless IR-level code. Indeed, this is not uncommon [90,265]: luckily, modern
compilers offer explicit support to preserve our constant-time invariants. In more

5.4 Constantine 99

detail, we use LLVM backend options (e.g., ~x86-cmov-converter=0 for branchless
lowering on x86) to control this behavior. As discussed later, we have also experimen-
tally validated CONSTANTINE-instrumented binaries preserve our security invariants
by means of a dedicated verifier.

5.4.3 Data Flow Linearization

With data flow linearization (DFL), we devise a new abstraction for controlling
the data access patterns influenced by secret data, so that arbitrarily different
(secret) inputs will lead to the same observable program behavior for an attacker.
As we discuss in our security evaluation of Section 5.5, this design hardens against
side-channel attacks that prior solutions cannot handle and it does not suffer from
leaks through data-flow invariants and memory safety violations as we saw for such
solutions in Section 5.2. Furthermore, thanks to its combination with points-to
analysis, DFL is the first solution that does not place restrictions on pointer and
object types, supporting for instance pointer-to-pointer casts that occur in real-world
crypto code.

DFL: For every program point that performs a memory load or store operation,
DFL obliviously accesses all the locations that the original program can possibly
reference for any initial input.

To support this invariant we conduct a context-sensitive, field-sensitive points-to
analysis (described in Section 5.4.4.2) to build DFL metadata for each use of a
pointer expression in a sensitive load or store instruction. Such metadata describes
the portions of the object(s) that the expression may reference each time the
program evaluates it. We assume that only program-allocated memory can hold
secret-dependent data (external library calls cannot leak from Section 5.3).

For dynamic storage, that is stack- and heap-allocated objects, we instrument
the involved allocation sites in the program to keep track at run time of the object
instances currently stemming from an allocation site of interest to DFL (rightmost
part of Figure 5.1).

DFL uses indirection around incoming pointer values: it obliviously accesses all
the candidate object portions identified by the points-to analysis, and retrieves or
modifies the memory value only within the object instance (if any) corresponding to
the incoming pointer value. We apply DFL to every memory load or store made in
a code region linearized by CFL (where the operation will see an incoming L value
when on a decoy path), and to memory operations that are outside input-dependent
control flows but still secret-sensitive (e.g., array accesses with input-dependent
index).

Unlike prior solutions, we do not need a shadow location for decoy paths (accessing
it would leak the nature of such paths, Section 5.2), nor we let rogue pointers concur
to memory accesses. Our design makes data accesses oblivious to secret dependencies
and to the nature of control paths, and preserves memory safety in the process.

5.4 Constantine 100

typedef struct dfl_obj_list {
struct dfl_obj_list* next;
struct dfl_obj_list* prev;
struct dfl_obj_list** head_ptr; // for fast removal from list
unsigned long magic; // to distinguish DFL heap objects
unsigned char datal]l; // contents of program object

} dfl_obj_list_t;

Figure 5.4. In-band metadata for data flow linearization.

5.4.3.1 Load and Store Wrappers

For the linearization of the data flow of accessed locations, we use ct_load and
ct_store primitives for DFL indirection and resort to different implementations
optimized for the storage type and the size of the object instances to stride obliviously.
As we discussed when presenting the CFL stage, we accompany each use of a pointer
expression in a load or store with DFL metadata specific to the program point.

DFL metadata capture at compilation time the points-to information for all
the allocation sites of possibly referenced objects. The analysis comprises stack
allocations, objects in global memory, and heap allocation operations. For each
site, we use field-accurate information to limit striding only to portions of an object,
which as a whole may hold thousands of bytes in real-world code.

Depending on the scenario, the user can choose the granularity A at which
memory accesses should become oblivious to an adversary. One may only worry
about cache attacks (A=64) if, say, only cross-core (cache) attacks are to be mitigated
(e.g., with cloud vendors preventing core co-location across security domains by
construction [292]). Or one may worry about arbitrary attacks if, say, core colocation
across security domains is possible and attack vectors like MemJam (A =4) are at
reach of the attacker.

Our wrapper implementations stride an object portion with a pointer expression
incremented by A bytes every time and which may match the incoming p input
pointer from the program at most once. Depending on the object portion size, DFL
picks between standard AVX instructions for striding, AVX2/AVX512 gather-scatter
sequences to load many cache lines at once followed by custom selection masks, and
a cmov-based sequence that we devise to avoid the AVX setup latency for small
objects (details in Appendix F.2).

The DFL load and store wrappers inspect all the allocation sites from the
metadata. For global storage only a single object instance exists; for stack and heap
objects the instances may change during the execution, and the wrappers inspect the
run-time metadata that the transformed program maintains (using doubly linked
lists and optimizations that we describe in the next sections).

For a load operation, DFL strides all the object instances that the program point
may reference and conditionally selects the value from the object portion matching
the desired address. For decoy paths, no match is found and ct_load returns a
default value.

For a store operation, DFL breaks it into a load followed by a store. The rationale
is to write to every plausible program point’s target, or the adversary may discover
a secret-dependent write destination. For every object portion identified by DFL

5.4 Constantine 101

store metadata, we read the current value and replace it with the contents for the
store only when the location matches its target, otherwise we write the current value
back to memory. Decoy paths “refresh” the contents of each object; real paths do
the same for all but the one they modify.

5.4.3.2 Object Lifetime

DFL metadata supplied at memory operations identify objects based on their
allocation site and characteristics. While global storage is visible for the entire
execution, stack and heap locations have a variable lifetime, and we need to maintain
run-time metadata for their allocation sites.

We observe that real-world crypto code frequently allocates large structures on
the stack and pointers seen at memory operations may reference more than one such
structure. At the LLVM IR level, stack-allocated variables take the form of alloca
instructions that return a pointer to one or more elements of the desired type. The
compiler automatically releases such storage on function return.

We interpose on alloca to wrap the object with in-band metadata information
depicted in Figure 5.4. Essentially, we prepend the originally allocated element with
fields that optimize DFL operations and preserve stack alignment: the program
element becomes the last field of a variable-sized df1_obj_list_t structure. Then,
we assign the virtual register meant to contain the v pointer from alloca with the
address of v.data (32-byte offset on x64).

This transformation is simple when operating at the compiler IR level: unlike
binary rewriting scenarios [103], the compiler is free to modify the stack layout while
preserving program semantics, including well-behaved pointer arithmetics. Upon
alloca interposition, we make the program update the run-time allocation site
information and a symmetric operation happens on function exit.

Heap variables see a similar treatment. We interpose on allocation operations
to widen and prepend the desired object with in-band metadata, with the address
of v.data returned to the program instead of the allocation base v. The v.magic
field is pivotal for handling free() operations efficiently: when interposing on them,
we may witness a df1l_obj_list_t structure or a “standard” object from other
program parts. We needed an efficient means to distinguish the two cases, as free()
operations take the allocation base as input: for DFL objects we have to subtract
32 from the input pointer argument. We leverage the fact that allocators like the
standard libc allocator ptmalloc prepend objects with at least one pointer-sized
field. Hence accessing a heap pointer p as p — 8 is valid: for DFL objects it would
be the address of the magic field and we check its peculiar value to identify them.

5.4.3.3 Optimizations

One advantage of performing DFL at compiler IR level is that we can further
optimize both the data layout to ease metadata retrieval and the insertion of our
DFL wrappers.

We identify functions that do not take part in recursive patterns and promote to
global variables their stack allocations that sensitive accesses may reference. The
promotion is sound as such a function can see only one active stack frame instance

5.4 Constantine 102

at a time. The promotion saves DFL the overhead of run-time bookkeeping, with
faster metadata retrieval for memory operations as we discuss next. To identify
functions apt for promotion, we analyze the call graph of the program (made only
of direct calls after IR normalization) to identify strongly connected components
from recursion patterns [397] and exclude functions taking part in them.

We also partially inline DFL handlers, as object allocation sites are statically
known from points-to analysis. For global storage, we also hard-code the involved
address and striding information. For instance, a load operation from address ptr
becomes in pseudo-code:

res = 0

res |= dfl_glob_load(ptr, globl, stride_offset_gl, stride_size_gl)
res |= dfl_glob_load(ptr, glob2, stride_offset_g2, stride_size_g2)
res |= dfl_load(ptr, objs_asl, stride_offset_asl, stride_size_as2)
res |= dfl_load(ptr, objs_as2, stride_offset_as2, stride_size_as2)
res |= dfl_load(ptr, objs_as3, stride_offset_as2, stride_size_as2).

This is because the oracle determined that ptr may reference (portions of) global
storage globl, glob2 or objects from allocation sites asl, as2, as3, where objs_as; is
the pointer to the data structure (a doubly linked list of objects, as with AS2 in
Figure 5.1) maintained at run time for the allocation site (Section 5.4.3.2). With the
OR operations we perform value selection, as each df1_ helper returns 0 unless the
intended location ptr is met during striding. In other words, instead of maintaining
points-to sets for memory operations as data, we inline their contents for performance
(saving on retrieval time) and leave the LLVM optimizer free to perform further
inlining of df1_ helpers code. The treatment of store operations is analogous.

Finally, we devise an effective (Section 5.7) striding optimization for loops. We
encountered several loops where the induction variable flows in a pointer expression
used to access an object, and from an analysis of its value (based on LLVM’s scalar
evolution) we could determine an invariant: the loop would be touching all the
portions that require DFL striding and a distinct portion at each iteration. In other
words, the code is “naturally” striding the object: we can avoid adding DFL striding
and thus save on n(n — 1) unnecessary accesses.

5.4.4 Support Analyses

The compatibility of CONSTANTINE with real-world code stems also from two “oracles”
as we tailor robust implementations of mainstream program analysis techniques to
our context: an information flow tracking technique to identify program portions
affected by a secret and a points-to analysis that we enhance with context sensitivity
to obtain points-to sets as accurate as possible.

5.4.4.1 Identifying Sensitive Program Portions

Control and data flow linearization need to be applied only to regions affected by
secret data, as protecting non-leaky code only hampers performance.

We assume the user has at their disposal a profiling suite to exercise the alter-
native control and data flow paths of the crypto functionality they seek to protect.
Developers can resort to existing test suites for libraries, actual workloads, or program
testing tools (e.g. generic [132] or specialized [160] fuzzers) to build one.

5.4 Constantine 103

We then use DataFlowSanitizer (DFSan), a dynamic information flow tracking
solution for LLVM, to profile the normalized IR of Section 5.4.2.2 over the profiling
suite. DFSan comes with taint propagation rules for virtual registers and program
memory and with APIs to define taint source and sink points. We write taint source
configurations to automatically taint data that a program reads via I/O functions
(e.g., a key file) and use as sink points conditionals, memory load/store operations,
and div/rem instructions in the normalized IR. In the DFSan-transformed IR we then
encode rules in the spirit of FlowTracker [306] to handle implicit flows among virtual
registers, leaving those possibly taking place through memory to complementary
tools like FTT [136].

We aggregate DFSan outputs to build a set of branches and memory accesses that
are secret-dependent, feeding it to CFL and DFL. As we mentioned in Section 5.4.2,
CFL will then push the hardening process to nested flows, linearizing their control
and data flows. During the execution of the profiling suite we also profile loop trip
counts that we later use as initial predictions for CFL (Section 5.4.2.4).

5.4.4.2 Points-to Analysis

Points-to analyses [330] determine the potential targets of pointers in a program.
Nowadays they are available off-the-shelf in many compilation systems, with inclusion-
based approaches in Andersen style [10] typically giving the most accurate results.
In CONSTANTINE, we extend the Andersen-style analysis of the popular SVF library
for LLVM [344]. For each pointer usage in the program, we use this analysis to build
the points-to set of objects that it may reference at run time. Typically, points-to
analyses collapse object instances from a dynamic allocation site into an abstract
single object. Hence, points-to sets contain information on object allocation sites
and static storage locations.

Points-to analyses are sound. However, they may overapproximate sets by
including objects that the program would never access at run time. In a lively area
of research, many solutions feature inclusion-based analyses as the approach is more
accurate than the alternative, faster unification-based one [338]. Inclusion-based
analyses could give even more accurate results if they were to scale to context
sensitivity, i.e., they do not distinguish the uses of pointer expressions (and thus
potentially involved objects) from different execution contexts. The context is
typically intended as call-site sensitivity, while for object-oriented managed languages
other definitions exist [259,331]. To optimize the performance of DFL, we need as
accurate points-to sets as possible, so in CONSTANTINE we try to restore context
sensitivity in an effective manner for a sufficiently large codebase such as the one of
a real-world crypto library.

Aggressive Cloning We use function cloning to turn a context-insensitive analysis
in a context-sensitive one. A calling context [98] can be modeled as an acyclic path
on the call graph and one can create a function clone for every distinct calling
context encountered during a graph walk. This approach can immediately spin out
of control, as the number of acyclic paths is often intractable [99, 387].

Our scenario however is special, as we may clone only the functions identified as
secret-dependent by the other oracle, along with their callees, recursively. We thus

5.4 Constantine 104

explore aggressive cloning along the maximal subtrees of the call graph having a
sensitive function as root. The rationale is that we need maximum precision along the
program regions that are secret-dependent, while we can settle for context-insensitive
results for the remainder of the program, which normally dominates the codebase
size.

Aggressive cloning turns out to be a key performance enabler, making DFL
practical and saving on important overheads. As we discuss in Section 5.7, for
wolfSSL. we obtain points-to sets that are ~6x smaller than the default ones of
SVF and very close to the run-time optimum. The price that we trade for such
performance is an increase in code size: this choice is common in much compiler
research, both in static [271] and dynamic [69] compilation settings, for lucrative
optimizations such as value and type-based specialization.

Refined Field Sensitivity A field-sensitive analysis can distinguish which por-
tions of an object a pointer may reference. Real-world crypto code uses many-field,
nested data structures of hundreds or thousands of bytes, and a load/store operation
in the program typically references only a limited portion from them. Field-accurate
information can make DFL striding cheaper: this factor motivated our practical
enhancements to the field-sensitive part of SVF.

The reference implementation fails to recover field-precise information for about
nine-tenths of the wolfSSL accesses that undergo DFL, especially when pointer
arithmetics and optimizations are involved. We delay the moment when SVF falls
back to field-insensitive abstract objects and try to reverse-engineer the structure
of the addressing so to fit it into static type declarations of portions of the whole
object. Our techniques are inspired by duck typing from compiler research; we cover
them in Appendix F.3. Thanks to these refinements, we could recover field-sensitive
information for pointers for 90% of the sensitive accesses in our case study.

Indirect Calls Points-to analysis also reveals possible targets for indirect calls [344].
We use this information during IR normalization when promoting them to if-series
of guarded direct calls (Section 5.4.2.2), so to remove leaks from variable targets.
We refine the candidates found by SVF at call sites by matching function prototype
information and eliminating unfeasible targets. Indirect call target information is
also necessary for the aggressive cloning strategy.

5.4.5 Discussion

CONSTANTINE implements a compiler-based solution for eliminating microarchitec-
tural side channels while coping with the needs of real-word code. We chose LLVM
for its popularity and the availability of mature information-flow and points-to
analyses. Nonetheless, our transformations are general and could be applied to
other compilation toolchains. Similarly, we focus on x86/x64 architectures, but
multiplexing conditional-assignment and SIMD striding instructions exist for others
as well (e.g. ARM SVE [341] , RISC-V “V” [305]).

Moreover, operating at the compiler IR level allows us to efficiently add a level
of indirection, with taken unleashing the optimizer and with DFL making memory
accesses oblivious to incoming pointers. In addition, aggressive function cloning

5.5 Security Analysis 105

allows us to transform the codebase and unveil a significantly more accurate number
of objects to stride. The IR also retains type information that we can leverage to
support field sensitivity and refine striding.

The just-in-time strategy to linearize secret-dependent unbounded control flows
(loops) allows us to dodge intractability with high bounds and code bloat with
tractable instances [332]. For points-to set identification and indirect call promotion,
our analyses yield very accurate results (i.e., closely matching the run-time accesses)
on the programs we consider. We leave the exploration of a just-in-time flavor for
them to future work, which may be helpful in non-cryptographic applications.

The main shortcoming of operating at the IR level is the inability to handle
inline assembly sequences found in some crypto libraries. While snippets that break
constant-time invariants are uncommon, they still need special handling, for instance
with annotations or lifting. Verification-oriented lifting [304], in particular, seems a
promising avenue as it can provide formally verified C equivalent representations
that we could use during IR normalization.

As the programs we study do not exercise them, for space limitations we omit
the treatment of recursion and multithreading. Appendix F.4 details the required
implementation extensions.

5.5 Security Analysis

This section presents a security analysis of our transformations. We start by arguing
that instrumented programs are semantically correct and induce secret-oblivious
code and data access traces. We then discuss how our design emerges unscathed by
traditional passive and active attacks and examine the residual attack surface.

Correctness and Obliviousness Correctness follows directly from our design,
as all our transformations are semantics-preserving. In short, for control flows, real
paths perform all and only the computations the original program would make. For
data flows, values from decoy paths cannot flow into real paths and correctness
properties such as memory safety are preserved. Appendix F.5 provides informal
proofs for these claims.

We now discuss how our linearization design yields oblivious code and data access
traces. For code accesses, PC-security follows by CFL construction, as we removed
conditional branches, loops see a fixed number of iterations (we discuss wrong trip
count predictions later), and IR normalization handles abort-like sequences. For
data accesses, we wrapped load and store operations with DFL machinery that
strides portions of every abstract (i.e., by allocation site) object that the operation
may access, independently of the incoming pointer value. For dynamic storage, for
any two secrets, the program will see identical object collections to maintain at
run-time: the composition of the lists can vary during the execution, but identically
so for both secrets. Finally, for virtual registers that are spilled to memory by the
backend, the CPU reads and writes them with the same instructions regardless of
the current taken predicate value, so those accesses are also oblivious.

5.5 Security Analysis 106

Security Properties We build on the obliviousness claims above to show that
both passive attacks (attackers only monitoring microarchitectural events) and active
attacks (attackers also arbitrarily tampering with the microarchitectural state) are
unsuccessful.

No instruction latency variance from secret-dependent operand values is possible,
since we replace and sanitize instructions such as division (Section 5.4.2.5). Memory
accesses may have variable latencies, but, thanks to the DFL indirection, those will
only depend on non-secret code/data and external factors. Moreover, DFL wrappers
do not leak secrets and do not introduce decoy paths side channels in terms of decoy
data flows or exceptions. In Section 5.4.3.1, we explained how load and store helpers
stride objects using safe [82,301] cmov or SIMD instructions. As for decoy paths,
taken can conditionally assign an incoming pointer with 1: the adversary would need
access to CPU registers or memory contents to leak the nature of a path (outside
the threat model). Finally, helpers are memory-safe as points-to analysis is sound
and we track object lifetimes.

Finally, an active attacker may perturb the execution to attempt Flush+Reload,
Prime+Probe, and other microarchitectural attacks to observe cache line-sized or
even word-sized victim accesses. With vulnerable code, they could alter for instance
the access timing for a specific portion of memory, and observe timing differences to
detect matching victim accesses. However, thanks to the obliviousness property of
our approach, leaking victim accesses will have no value for the attacker, because
we access all the possible secret-dependent code/data locations every time.

Residual Attack Surface We now discuss the residual attack surface for CON-
STANTINE. Design considerations aside, the correctness and obliviousness of the
final instrumented binary are also subject to the correctness of our CONSTANTINE
implementation. Any implementation bug may introduce an attack surface. To
mitigate this concern, we have validated our correctness claims experimentally by
running extensive benchmarks and test suites for the programs we considered in
our evaluation. We have also validated our obliviousness claims experimentally
by means of a verifier, as detailed later. Overall, our implementation has a rela-
tively small trusted computing base (TCB) of around 11 KLOC (631 LOC for our
profiler, 955 LOC for CFL, 2561 for DFL, and 7259 LOC for normalization and
optimization passes), which provides confidence it is possible to attain correctness
and obliviousness in practice.

CONSTANTINE’s residual attack surface is also subject to the correctness of the
required oracle information. The static points-to analysis we build on [344] is sound
by design and our refinements preserve this property—barring again implementation
bugs. Our information-flow tracking profiler, on the other hand, relies on the
completeness of the original profiling suite to eliminate any attack surface. While
this is a fundamental limitation of dynamic analysis, we found straightforward to
obtain the required coverage for a target secret-dependent computation, especially
in cryptographic software. Implementation bugs or limitations such as implicit flows
(Section 5.4.4.1) also apply here. A way to produce a more sound-by-design oracle is
to adopt static information-flow tracking, but this also introduces overtainting and
hence higher overheads [301].

5.6 Performance Evaluation 107

An incomplete suite might also underestimate a secret-dependent loop bound.
Thanks to just-in-time linearization correctness is not affected, but every time
the trip count is mispredicted (i.e., real-path loop execution yields a higher count
than the oracle), the adversary may observe a one-off perturbation (given that
the instrumentation quickly adapts the padding). This is insufficient to leak any
kind of high-entropy secret, but one can always envision pathological cases. Similar
considerations can be applied to recursive functions.

In principle, other than statically unbound secret-dependent control flows, one
can also envision statically unbound secret-dependent data flows such as a secret-
dependent heap-allocated object size. We have not encountered such cases in prac-
tice, but they can also be handled using just-in-time (data-flow) linearization—i.e.,
padding to the maximum allocation size encountered thus far during profiling /pro-
duction runs with similar characteristics.

Part of the residual attack surface are all the code/data accesses fundamentally
incompatible with linearization and constant-time programming in general. For
instance, on the CFL front, one cannot linearize imbalanced if-else constructs
that invoke system calls, or more generally secret-dependent code paths executing
arbitrary library/system calls. Their execution must remain conditional. A way
to reduce the attack surface is to allow linearization of idempotent library/system
calls or even to include some external library/system code in the instrumentation.
On the DFL front, one cannot similarly linearize secret-dependent data accesses
with external side effects, for instance those to a volatile data structure backed by a
memory mapped I/O region (e.g., a user-level ION region [366]). Again, we have
not encountered any of these pathological cases in practice.

Similarly, CONSTANTINE shares the general limitations of constant-time program-
ming on the compiler and microarchitectural optimization front. Specifically, without
specific provisions, a compiler backend may operate optimizations that inadvertently
break constant-time invariants at the source (classic constant-time programming) or
IR (automated solutions like CONSTANTINE) level. Analogously, advanced microar-
chitectural optimizations may inadvertently re-introduce leaky patterns that break
constant-time semantics. Some (e.g., hardware store elimination [111]) may originate
new instructions with secret-dependent latencies and require additional wrappers
(and overhead). Others (e.g., speculative execution [210]) are more fundamental and
require orthogonal mitigations.

5.6 Performance Evaluation

This section evaluates CONSTANTINE with classic benchmarks from prior work to
answer the following questions:

1. What is the impact of our techniques on compilation time?

2. How is binary size affected by linearization?

3. What are the run-time overheads induced by CFL and DFL?

Methodology We implemented CONSTANTINE on top of LLVM 9.0 and SVF 1.9
and tested it on a machine with an Intel i7-7800X CPU (Skylake X) and 16 GB
of RAM running Ubuntu 18.04. We discuss two striding configurations to conceal

5.6 Performance Evaluation 108

memory access patterns with DFL: word size (A = 4), reflecting (core colocation)
scenarios where recent intra cache level attacks like MemJam [262] are possible,
and cache line size (A = 64), reflecting the common (cache attack) threat model of
real-wold constant-time crypto implementations and also CONSTANTINE’s default
configuration. We use AVX512 instructions to stride over large objects. Complete
experimental results when using AVX2 and the A =1 configuration (presently out of
reach for attackers) are further detailed in Appendix F.6. We study:
o 23 realistic crypto modules manually extracted by the authors of SC-Eliminator
[389] from a 19-KLOC codebase (SCE suite), used also in the evaluation of
Soares et al. [332];

e 6 microbenchmarks used in the evaluation of Raccoon [301] (Raccoon suite)—
all we could recover from the source code of prior efforts [237,238]—using the
same input sizes;

e 8 targets used in constant-time verification works: 5 modules of the pycrypto
suite analyzed in [385] and 3 leaky functions of BearSSL and OpenSSL studied
in Binsec/Rel [90].

For profiling, we divide an input space of 32K elements in 128 equal partitions
and pick a random instance from each, producing a profiling input set of 256 inputs.
We build both the baseline and the instrumented version of each program at (-03).
Table 5.2 presents our full experimental datasets with the SCE suite (first five blocks)
and the Raccoon, pycrypto, and Binsec/Rel suites (one block each).

Validation We validated the implementation for PC-security and memory access
obliviousness with two verifiers. For code accesses, we use hardware counters for
their total number and a cycle-accurate software simulation in GEMb5. For data
accesses, we use cachegrind for cache line accesses and write a DBI [94] tool to
track what locations an instruction accesses, including predicated cmov ones visible
at the microarchitectural level. We repeatedly tested the instrumented programs in
our datasets with random variations of the profiling input set and random samples
of the remaining inputs. We found no visible variations.

Compilation Time To measure CONSTANTINE-induced compilation time, we
applied our instrumentation to all the programs in our datasets and report statistics
in Table 5.2. The first four data columns report the sensitive program points
identified with taint-based profiling over the randomly generated profiling input set.
For the SCE programs, we protect the key scheduling and encryption stages. For
brevity, we report figures after cloning and after secret-dependent pushing to nested
flows (Section 5.4.2): the former affected des3 and loki91, while the latter affected
applied-crypto/des, dijkstra, rsort, and tls-rempad-luk13. Interestingly, for
3way, the LLVM optimizer already transformed out a secret-sensitive branch that
would be visible at the source level, while no leaky data flows are present in it
(consistently with [389]).

Across all 37 programs, the average dynamic analysis time for taint tracking
and loop profiling was 4s, with a peak of 31.6s on libgcrypt/twofish (~1 C
KLOC). For static analysis (i.e., points-to), CFL/DFL transformations, and binary

5.6 Performance Evaluation

109

Table 5.2. Benchmark characteristics and overheads.

IR constructs (sensitive/total) performance binary size
program branches loops reads writes A=4 | x=64 A=4 | x=64
aes 0/1 0/1 224/235 0/68 1.13x | 1.08x | 1.16x | 1.16x
des 0/1 0/1 318/362 0/36 1.19x | 1.14x | 1.37x | 1.73x

» | des3 0/3 0/3 861/1005 | 0/89 1.49x | 1.36x | 1.92x | 2.84x
% anubis 0/1 0/1 776/1240 | 0/87 1.29x | 1.12x | 1.27x | 1.27x
% castd 0/1 0/1 333/372 0/36 1.13x | 1.06x | 1.16x | 1.16x
© cast6 - - 192/204 0/4 1.13x 1.08x | 1.01x 1.01x
ferypt - - 64/74 0/18 1.04x 1.03x | 1.01x 1.01x
khazad - - 136/141 0/1 1.13x 1.09x | 1.15x 1.15x

& aes__core - - 160/192 0/16 1.12x 1.06x | 1.22x 1.22x
o cast-ssl 0/1 0/1 333/355 0/54 1.23x | 1.10x | 1.24x | 1.24x
aes 0/12 0/6 | 452/525 | 0/153 | 1.05x | 1.03x | 1.36x | 1.72x
cast128 0/2 0/2 333/374 0/52 1.02x 1.01x | 1.16x 1.16x

Z | des 0/1 0/1 136/185 0/24 1.01x | 1.01x | 1.16x | 1.16x
é kasumi 0/7 0/7 96/174 0/18 1.01x | 1.01x | 1.29x | 1.57x
seed 0/6 0/6 320/360 0/41 1.02x | 1.01x | 1.18x | 1.18x
twofish 1/8 0/6 2402/2450 | 4/1084 | 1.14x 1.12x | 1.45x 2.42x

= | 3way 0/4 0/4 | 0/8 0/14 1.00x | 1.00x | 1.00x | 1.00x
2 | des 2/10 0/6 | 134/182 | 2/17 | 1.24x | 1.09x | 1.23x | 1.45x
% | 1okiol 16/76 24/28 | 16/24 0/6 1.51x | 1.43x | 1.02x | 1.02x
£ camellia - - 32/48 0/48 1.02x | 1.01x | 1.01x | 1.01x
Z | des 0/2 0/2 144/195 0/12 1.06x | 1.06x | 1.29x | 1.85x
g | seed 0/4 0/1 | 200/265 | 0/18 | 1.18x | 1.10x | 1.22x | 1.22x
= twofish - - 2574/2662 | 0/1080 | 1.97x 1.92x | 1.43x 2.24x
binsearch 1/4 1/2 1/3 0/2 1.33x | 1.18x | 1.01x | 1.01x

. dijkstra 3/15 0/5 5/10 3/7 3.45x 1.51x | 1.01x 1.01x
§ findmax 0/2 0/2 0/1 0/1 1.00x | 1.00x | 1.00x | 1.00x
2 histogram 0/2 0/2 1/2 1/1 2.66x | 1.68x | 1.01x | 1.01x
= matmul 0/5 0/5 0/2 0/2 1.00x | 1.00x | 1.00x | 1.00x
rsort 0/9 4/6 6/8 4/4 1.87x 1.84x | 1.30x 1.30x

aes 0/11 0/5 96/223 0/59 1.13x 1.06x | 1.19x 1.19x

g arcd 0/3 0/3 3/30 2/10 1.07x | 1.03x | 1.01x | 1.01x
Z | blowfish 0/16 0/12 | 24/77 0/39 5.07x | 3.17x | 1.01x | 1.01x
2| cast 0/29 0/2 | 284/321 | 0/57 | 1.09x | 1.04x | 1.37x | 1.37x
des3 0/5 0/1 32/40 0/7 1.06x | 1.04x | 1.01x | 1.01x

2 | tls-rempad-lukl3 4/17 1/1 6/14 4/17 1.01x | 1.01x | 1.02x | 1.02x
5 aes_ big 0/45 0/8 32/141 0/40 1.01x 1.01x | 1.29x 1.29x
M | des_tab 0/50 0/28 | 8/164 0/97 | 1.04x | 1.02x | 1.29x | 1.20x
SCE suite - - - - 1.16x 1.11x | 1.22x 1.35x
Raccoon suite - - - - 1.68x | 1.33x | 1.05x | 1.05x

(1(\1\;(();) pycrypto suite - - - - 1.48x | 1.30x | 1.10x | 1.10x
Binsec/Rel suite |- - - - 1.02x | 1.01x | 1.19x | 1.19x

all programs - - - - 1.26x 1.16x | 1.17x | 1.25x

generation, the end-to-end average time per benchmark was 1.4s, with a peak
of 23s on botan/twofish (567 C++ LOC). Our results confirm CONSTANTINE’s
instrumentation yields realistic compilation times.

Binary Size Next, we study how our instrumentation impacts the final binary size.
Two design factors are at play: cloning for the sake of accurate points-to information

5.6 Performance Evaluation 110

and DFL metadata inlining to avoid run-time lookups for static storage. Compared
to prior solutions, however, we save instructions by avoiding loop unrolling.

During code generation, we leave the choice of inlining AVX striding sequences
to the compiler, suggesting it for single accesses and for small stride sizes with the
cmov-based method of Appendix F.2—we observed lower run-time overhead from
such choice. When we use word-level striding (A =4), the binary size is typically
smaller than for cache line-level striding (A = 64), as the AVX helpers for fast cache
line accesses feature more complex logics.

As shown in Table 5.2, the average binary size increment on the SCE suite is
around 1.35x in our default configuration (A =64) and 1.22x for A =4. For des3, we
observe 1.92-2.84x increases mainly due to cloning combined with inlining. Smaller
increases can be noted for the two twofish variants, due to DFL helpers inlined
in the many sensitive read operations. The binary size increase for all the other
programs is below 2x. The Raccoon programs see hardly noticeable differences
with the exception of rsort, for which we observe a 1.3x increase. We note similar
peak values in the two other suites, with a 1.37x increase for cast in pycrypto and
1.29x for aes_big and des_tab in Binsec/Rel. Our results confirm CONSTANTINE’S
instrumentation yields realistic binary sizes.

Run-time Performance Finally, we study CONSTANTINE’s run-time performance.
To measure the slowdown induced by CONSTANTINE on our benchmarks, we measured
the time to run each instrumented program by means of CPU cycles with thread-
accurate CPU hardware counters (akin [389]). We repeated the experiments 1,000
times and report the mean normalized execution time compared against the baseline.
Table 5.2 presents our results.

CONSTANTINE’s default configuration produces realistic overheads across all
our benchmarks, for instance with a geomean overhead of 11% on the SCE suite
and 33% on the Raccoon programs. These numbers only increase to 16% and
68% for word-level protection. Our SCE suite numbers are comparable to those of
SC-Eliminator [389] and Soares et al. [332] (which we confirmed using the artifacts
publicly released with both papers, Appendix F.6), despite CONSTANTINE offering
much stronger compatibility (i.e., real-world program support) and security (i.e.,
generic data-flow protection and no decoy path side channels) guarantees. On the
Raccoon test suite, on the other hand, Raccoon reported two orders-of-magnitude
slowdowns (up to 432x) on a number of benchmarks, while CONSTANTINE’s worst-
case slowdown in its default configuration is only 1.84x, despite CONSTANTINE again
providing stronger compatibility and security guarantees (i.e., no decoy path side
channels). Overall, CONSTANTINE significantly outperforms state-of-the-art solutions
in the performance/security dimension on their own datasets, while providing much
better compatibility with real-world programs. For the two other suites, we observe
modest overheads with the exception of blowfish: its 3.17-5.07x slowdown originates
in a hot tight loop making four secret-dependent accesses on four very large tables,
a pathological case of leaky design for automatic repair.

5.7 Case Study 111

5.7 Case Study

The wolfSSL library is a portable SSL/TLS implementation written in C and
compliant with the FIPS 140-2 criteria from the U.S. government. It makes for a
compelling case study for several reasons.

From a technical perspective, it is representative of the common programming
idioms in real-world programs and is a complex, stress test for any constant-time
programming solution (which, in fact, none of the existing solutions can even partially
support). As a by-product, it also allows us to showcase the benefits of our design.

The library supports Elliptic Curve (EC) cryptography, which is appealing as it
allows smaller keys for equivalent guarantees of non-EC designs (e.g. RSA) [357]. EC
Digital Signature Algorithms (ECDSA) are among the most popular DSA schemes
today, yet their implementations face pitfalls and vulnerabilities that threaten their
security, as shown by recent attacks such as LadderLeak [17] (targeting the Mont-
gomery ladder behind the EC scalar multiplication in ECDSA) and CopyCat [263]
(targeting the vulnerable hand-crafted constant-time (CT) wolfSSL ECDSA code).

In this section, we harden with CONSTANTINE the mulmod modular multiplication
procedure in ECDSA from the non-CT wolfSSL implementation. This procedure
calculates a curve point k x GG, where k is a crypto-secure nonce and G is the EC
base point. Leaks involving k bits have historically been abused in the wild for, e.g.,
stealing Bitcoin wallets [38] and hacking consoles [128].

Code Features and Analysis The region to protect comprises 84 functions from
the maximal tree that mulmod spans in the call graph. We generate a profiling set of
1024 random inputs with 256-bit key length and identify sensitive branches, loops,
and memory accesses (Table 5.3). The analysis of loops is a good example of how
unrolling is unpractical. We found an outer loop iterating over the key bits, then
1 inner loop at depth 1, 4 at depth 2, and 3 at depth 3 (all within the same outer
loop). Every inner loop iterates up to 4 times, resulting in a nested structure—and
potential unroll factor—of 61,440. And this calulation is entirely based on profiling
information, the inner loops are actually unbounded from static analysis.

Similarly, cloning is crucial for the accuracy of DFL. We profiled the object sets
accessed at each program point with our DBI tool (Section 5.6). With cloning, on
average, a protected access over-strides (i.e., striding bytes that the original program
would not touch) by as little as 8% of the intended storage. Without cloning, on the
other hand, points-to sets are imprecise enough that DFL needs to make as many as
6.29x more accesses than strictly needed.

Overheads Table 5.3 presents our run-time performance overhead results, mea-
sured and reported in the same way as our earlier benchmark experiments. As
shown in the table, the slowdown compared to the original non-CT baseline of
wolfSSL (using the compilation parameter W=1) is 12.7x, which allows the CON-
STANTINE-instrumented version to complete a full run in 8 ms. The compilation
parameter W allows the non-CT version to use different double-and-add interleavings
over the key bits as part of its sliding window-based double-and-add approach to
implement ECC multiplication. In brief, a higher W value trades run-time storage
(growing exponentially with W) with steady-state throughput (increasing linearly

5.7 Case Study 112

Table 5.3. Characteristics and overheads for wolfSSL.

baseline | w/o cloning | w/ cloning
functions 84 84 864
binary size (KB) 39 135 (3.5x) 638 (16.35x)
exec cycles (M) 2.6 200 (77x) 33 (12.7x)
accessed objs/point | 1 6.29 1.08
tainted | w/o cloning - nested flows | w/ cloning - nested (tainted)
branches | 13 39 1046 (118)
loops 12 31 863 (139)
reads 33 138 2898 (52)
writes 1 91 1892 (2)
time ms) | cycles an) | binary size (ks)
wolfSSL (W=4) 0.35 1.6 39
wolfSSL (W=1) 0.57 2.6 39
wolfSSL (const. time) | 0.7 2.9 47
CONSTANTINE (W=1) | 8 33 638

with W), but also alters the code generated, due to snowball optimization from
inlined constants. This choice turns out to be cost-effective in the non-CT world,
but not for linearization.

For completeness, we also show results for the best configuration of the non-CT
version (which we profiled to be W=4) and the hand-written CT version of wolfSSL.
The non-CT code completes an ECC multiplication in 0.35 ms in its best-performing
scenario, while the hand-written CT version completes in 0.7 ms. Our automatically
hardened code completes in 8ms, that is within a 11.42x factor of the hand-written
CT version, using 11.38x more CPU cycles, yet with strong security guarantees
for both control and data flows from the articulate computation (i.e., 84 functions)
involved.

In terms of binary size increase, with cloning we trade space usage for DFL
performance. We obtain a 16.36x increase compared to the reference non-CT
implementation, and 13.57x higher size than the CT version. The performance
benefits from cloning are obvious (77x/12.7x=6.06x end-to-end speedup) and the
size of the binary we produce is 638 KB, which, in absolute terms is acceptable, but
amenable to further reduction. In particular, the nature of wolfSSL code is tortured
from a cloning perspective: it comprises 36 arithmetic helper functions that we clone
at multiple usage sites. We measured, however, that in several cases they are invoked
in function instances (which now represents distinct calling contexts for the original
program) that see the same points-to information. Hence, after cloning, one may
attempt merging back functions from calling contexts that see the same points-to
set, saving a relevant fraction of code boat without hampering DFL performance.

Other optimizations, such as our DFL loop optimization also yields important
benefits, removing unnecessary striding in some loops—without it, the slowdown
would more than double (27.1x). We conclude by reporting a few statistics on analysis
and compilation time. The profiling stage took 10m34s, the points-to analysis 20s
(~2s w/o cloning), and the end-to-end code transformation and compilation process

5.8 Conclusion 113

1mb51s (31s for the non-CT reference).

Overall, our results confirm that CONSTANTINE can effectively handle a real-world
crypto library for the first time, with no annotations to aid compatibility and with
realistic compilation times, binary sizes, and run-time overheads. CONSTANTINE’S
end-to-end run-time overhead, in particular, is significantly (i.e., up to two orders of
magnitude) lower than what prior comprehensive solutions like Raccoon [301] have
reported on much simpler benchmarks.

During our analysis of the hand-written CT version of wolfSSL for ECDSA
modular multiplication we found a side-channel that exposed secret information
in during the computation. We reported the vulnerability, which was assigned
CVE-2020-11713. Our analysis uses the fixed version of wolfSSL.

5.8 Conclusion

We have presented CONSTANTINE, an automatic constant-time system to harden
programs against microarchitectural side channels. Thanks to carefully designed
compiler transformations and optimizations, we devised a radical design point—
complete linearization of control and data flows—as an efficient and compatible
solution that brings security by construction, and can handle for the very first time
a production-ready crypto library component.

Our framework mitigates side-channel attacks at the software level by
controlling the compilation pipeline to ensure no side-channel is present
while running on modern hardware. However, software mitigations cannot
address CPU wvulnerabilities that may cause information leaks. Several
microarchitectural vulnerabilities have been discovered in recent years [210,
236,368], heavily undermining the isolation guarantees provided by current
CPUs. In the next chapter, we explore the relationship between software
and hardware bugs, and architectural and microarchitectural vulnerabilities,
focusing on their root cause. We highlight how they often share similar root
causes and investigate empty spots. By investigating them, we discover,
exploit, and propose mitigations for the first architectural CPU vulnerability
that leaks data without side channels.

Chapter 6

Architectural CPU
Vulnerabilities

6.1 Introduction

In recent years, a lot of research has been conducted to improve software security,
both on the application layer as well as on the operating-system (OS) layer [193,348].
The types of software vulnerabilities are well known and, e.g., categorized with
the Common Weakness Enumeration (CWE) [351]. In addition to manual security
analysis, there are several techniques to discover software vulnerabilities in automated
and semi-automated ways, e.g., fuzzing [132,399], or static and dynamic analysis [88,
274]. However, more recent works have shown that next to software vulnerabilities,
there are software-exploitable hardware vulnerabilities, such as Meltdown [236]
or Spectre [210]. These vulnerabilities can undermine software security which
always assumes bug-free and secure hardware. The discovery of transient-execution
attacks [61,210,236] showed that CPUs by virtually all vendors, including Intel,
AMD, and ARM, are affected by these software-exploitable hardware vulnerabilities.
However, as these vulnerabilities are architecturally not visible, transient-execution
attacks use side channels to observe and exploit them architecturally.

Following Meltdown and Spectre, a multitude of transient-execution attacks has
been discovered in this class of vulnerabilities [61,205,216, 314,358,368, 386]. All
of these attacks leak data, Meltdown-type attacks even across security boundaries,
including trusted execution environments (TEEs). Hence, they pose a severe threat
to the system security and resulted in numerous ad-hoc mitigations on the operating-
system and firmware level [60,178]. Despite the significant amount of research on
transient-execution attacks, they are not the only CPU vulnerabilities. Architectural
bugs have been known for much longer, with infamous examples such as the Pentium
FDIV bug [75] or the Pentium FOOF bug [79]. These vulnerabilities are intuitively
easier to observe as they do not require additional side channels. However, recent
work has highlighted the difficulty of adequately testing CPU design for such
vulnerabilities [101].

In this chapter, we systematically analyze both architectural and transient-
execution vulnerabilities, showing that the underlying type of vulnerability is often
the same. While the CWE recently introduced categories for such hardware vulnera-

6.1 Introduction 115

bilities, we show that the root cause of hardware vulnerabilities can also be classified
using the existing vulnerability types for software. As CPUs are also written in
(hardware) programming languages, it is indeed not surprising that vulnerabilities
known from software are also present in hardware. However, we mainly see complex
vulnerabilities in the hardware, such as race conditions or use after free.

Based on our systematic analysis, we investigate categories in which transient-
execution attacks are known, but no architectural equivalent is known. Specifically,
we systematically inspect CPUs for improperly initialized storage locations that
return (parts of) stale data. We focus on data loads where the structure that holds
the data is larger than the effective loaded data. Not initializing the whole structure
may leave stale data in the region not overridden by the effective data. This is, e.g.,
the case in the I/O address space, where memory-mapped devices often have strict
limitations, such as only allowing aligned 32-bit loads to specific addresses [182].

Discovering architectural leaks. The scan of the I/O address space on Intel
CPUs based on the Sunny Cove microarchitecture revealed that the memory-mapped
registers of the local Advanced Programmable Interrupt Controller (APIC) are not
properly initialized. As a result, architecturally reading these registers returns stale
data from the microarchitecture. Any data transferred between the L2 and the
last-level cache can be read via these registers. This vulnerability, named APIC
Leak, affects the 10" generation mobile Ice Lake CPUs, the newest, 12" generation,
Alder Lake CPUs, and the current 3"¢ generation of Xeon scalable server CPUs (Ice
Lake SP).

As the I/O address space is only accessible to privileged software, PIC Leak
targets Intel’s TEE, SGX. APIC Leak can leak data from SGX enclaves that run
on the same physical core. While AEAPIC Leak would represent an immense threat
in virtualized environments, hypervisors typically do not expose the local APIC
registers to virtual machines, eliminating the threat in cloud-based scenarios. Similar
to previous transient-execution attacks targeting SGX [314,358,367-369], £PIC Leak
is most effective when running in parallel to the enclave on the sibling hyperthread.
However, APIC Leak does not require hyperthreading and can also leak enclave
data if hyperthreading is unavailable or disabled.

We present two new techniques to leak data in use, i.e., values from enclave
registers, and data at rest, i.e., data stored in enclave memory. With Cache Line
Freezing, we introduce a technique putting targeted pressure on the cache hierarchy
without overwriting stale data. Cache Line Freezing exploits the observation that
Sunny Cove implements an optimization for zero cache lines, i.e., cache lines filled
only with ‘0’s. These cache lines still appear to travel through the cache hierarchy,
but they do not overwrite stale data. With this targeted pressure and enclave
single-stepping [360], we leak register values from cache lines in the secure state area
(SSA). A second technique, Enclave Shaking, exploits the capability of the operating
system to securely swap enclave pages. By alternatingly swapping enclave pages out
and back in, the stored data is forced through the cache hierarchy, allowing APIC
Leak to leak the values without even continuing the execution of the enclave. We
exploit APIC Leak in combination with Cache Line Freezing and Enclave Shaking
to extract AES-NI keys and RSA keys from Intel’s IPP library and the Intel SGX

6.1 Introduction 116

sealing and remote attestation keys. Our attack leaks memory from enclaves with
334.8 B/s and a success rate of 92.2 %.

Although we provide software workarounds for specific scenarios, such as AES-NI,
we conclude that there is no short-term workaround for protecting enclave data with-
out disabling the APIC memory-mapped range or disabling SGX. On January 2022,
Intel announced the deprecation of SGX on the affected CPU generations [188] for
client architectures, which coincidentally reduces the risk of widespread exploitation
after our submission. However, while it is deprecated on client CPUs, SGX is still
available on server CPUs (i.e., 3"d generation of Xeon scalable server CPUs). An
attacker only needs one up-to-date system to extract secrets from an enclave (e.g.,
bypassing Signal private contact discovery [252], leaking DRM secrets or attestation
keys). Thus, if not mitigated, exploiting EPIC Leak is a significant threat to enclave
security. Disabling the APIC I/O memory via a microcode update, or deprecating
SGX are effective mitigations against the specific vulnerability discovered. However,
we argue that a generic mitigation of the vulnerability class in future hardware is an
open research problem we identify.

Contributions. The contributions of this chapter are:

1. We systematically analyze and categorize CPU vulnerabilities, showing that
they have the same types as for software, and identifying blank spots.

2. In the blank spots, we discover APIC Leak, an architectural vulnerability in
the local APIC leaking data from SGX enclaves, including data in use and
data at rest.

3. We design two complementary techniques that leverage microarchitectural
optimizations to control which cache line APIC Leak samples from the cache
hierarchy.

4. We evaluate our techniques by leaking cryptographic keys, including Intel’s
official key from the quoting enclave.

Outline. Section 6.2 provides background. Section 6.3 analyzes and categorizes
CPU wvulnerabilities, leading to blank spots with potentially undiscovered vulnera-
bilities. Section 6.4 details the APIC Leak vulnerability and its threat model. In
Section 6.5, we show how APIC Leak leaks data from SGX enclaves. We discuss
mitigations in Section 6.6 and conclude in Section 6.7.

Responsible Disclosure. We responsibly disclosed our findings to Intel on De-
cember 8th, 2021. Intel acknowledged our findings on December 22nd, 2021, assigned
CVE-2022-21233 and is working on possible mitigations.

Code Access. Our proof of concept of the attacks is open-sourced at https:
//github.com/IAIK/AEPIC.

https://github.com/IAIK/AEPIC
https://github.com/IAIK/AEPIC

6.2 Background 117

6.2 Background

This section covers fundamental background for the reader to understand the rest of
the chapter.

6.2.1 APIC

The Advanced Programmable Interrupt Controller (APIC) manages and routes
interrupts in modern CPUs. The APIC is split into two different components: The
Local APIC integrated into each logical core and the external I/O APIC in the
Intel’s System Chip Set. The Local APIC manages interprocessor interrupts (IPIs)
and receives interrupts from the processor interrupts pins, forwarding them to the
core to be handled, while the I/O APIC receives external interrupts events and
forwards them to the target local APICs [182].

Local APIC. A Local APIC can receive, generate, and forward interrupts, both
to its local core (through IPIs or local interrupt sources, i.e., timer interrupts,
performance monitoring counter interrupts, thermal sensor interrupts), to other
cores (through IPIs), and from external devices (through the I/O APIC). Each Local
APIC is made up of a set of APIC registers to control its functionality or expose the
state of the interrupts in the system. A processor can generate IPIs or set up local
interrupts via APIC registers of its own Local APIC.

Local APIC Registers. By default, modern APICs operate in xAPIC mode,
which exposes Local APIC registers as a memory-mapped 4 kB region in the physical
address space. The address of the region is set in the TA32_APIC_BASE MSR and
independent for each logical core [182]. At startup, the region is set at physical
address OxFEE00000 but it can be moved on a per-core basis by changing the value
of the TA32_APIC_BASE MSR. APIC registers are either 32, 64, or 256 bits, but they
are mapped into the memory-mapped region as 32-bit values, always aligned to
128-bit boundaries. Thus, registers wider than 32 bits are split and mapped over
multiple 128-bit aligned regions in the memory-mapped area. This means that bytes
4 to 15 in each 16-byte (128-bits) region are never architecturally defined. Intel
states that any access that touches bytes 4 through 15 of an APIC register may cause
undefined behavior and must not be executed [182]. The APIC can be set in 224 PIC
mode if supported, which extends xAPIC mode with different improvements, like
enhancing the performance of interrupt delivery and providing MSR-based access to
APIC registers which disables the memory-mapped interface. The OS can enable or
disable x2APIC mode by setting bit 10 of TA32_APIC_BASE MSR.

6.2.2 Memory Subsystem

CPUs rely on a hierarchical memory subsystem with data cached over multiple levels.
Lower level caches provide faster memory with smaller storage capabilities for data
frequently accessed, while higher-level caches offer bigger storage at cost of increased
latency. Modern Intel CPUs usually have at the lowest level a private instruction

6.2 Background 118

cache (L1I) and data cache (L1D), and at the second level a private unified cache
(L2). The Last-Level Cache (LLC or L3) is usually shared across all physical cores.

Path to Main Memory. The CPU tries to serve each memory access from the
lowest cache level possible. It allocates the resources necessary to track the memory
requests, i.e., load or store buffers. Upon completion of the address translation,
if any of the physical tags in the indexed cache set matches the physical address,
the data is returned from the L1D. In case no tag matches (i.e., the data is not
in L1D), the CPU allocates a line-fill-buffer (LFB) entry to interface with the L2
cache. Line fill buffers act as a decoupling component between L1 and L2 caches to
keep track of outstanding requests, uncacheable memory accesses, and non-temporal
moves [314,368]. The CPU then performs the lookup in L2, which loads the LFB
entry in case the data is present, returns it to L1D, and back to the load buffers. In
case data is not present in L2, the CPU must issue an offcore request to the LLC
cache. It reserves a fill buffer entry to hold the data in the superqueue [212,221]
between L2 and LLC, issues the load over the ring interconnect [282] and waits for
the request to be completed. The superqueue decouples the interaction between
the L2 and the LLC caches, in a similar way the line fill buffers do between L1 and
L2. The ring interconnect is an on-die interconnect used for uncore communication
between CPU cores, LLC, memory controller, and the integrated GPU. The load
request is satisfied either by the LLC or the memory controller, and the fill-buffer
entry in the superqueue collects the value, which sends the data back to the core.

6.2.3 Intel SGX

Intel Software Guard Extension (SGX) provides a Trusted Execution Environment
(TEE) on x86 processors. Introduced in Skylake CPUs, SGX offers hardware isolation
and local and remote attestation for so-called enclaves even on possibly attacker-
controlled machines [182]. SGX enclaves reside in the virtual address space of a
userspace process, but their physical memory is backed by the protected Enclave
Page Cache (EPC). Stores to EPC are automatically encrypted, and loads are
decrypted by the memory encryption engine. While enclave memory is inaccessible
to attackers probing the memory bus [86], CPUs affected by transient-execution
vulnerabilities can leak the values from the microarchitecture [314,358,368|.

Enclaves can only be executed from pre-configured entry points using the eenter
instruction and exit using an eexit instruction. If a fault or interrupt occurs while
an enclave is running, the processor issues an Asynchronous Enclave Exit (AEX),
securely storing and clearing all the enclave CPU registers at the time of enclave
interruption in a Save State Area (SSA) inside EPC. An eresume instruction restores
enclave execution from the SSA frame.

Due to the limited EPC size, untrusted system software can leverage the ewb and
eldu instructions to move encrypted EPC pages to main memory and back, without
revealing the content. When an enclave page is moved from main memory back to
EPC using eldu, it is decrypted and cryptographically verified to ensure its content
has not been tampered with, bringing the plaintext data to the L1 cache [358].

SGX supports local and remote attestation. During the enclave creation process,
the CPU collects cryptographic measurements about the starting enclave and its

6.3 Software and Hardware Vulnerabilities 119

signature in two different Measurement Registers (MRSIGNER and MRENCLAVE). An
enclave can generate a signed local attestation for a target enclave using the ereport
instruction, which can be cryptographically verified by the target enclave using a
key obtained through the egetkey instruction. The report of the local attestation
includes the enclave’s initial code and data as measurement registers in addition to
other security-related information [182]. Intel provides a trusted quoting enclave
to sign locally-generated identity reports using an Intel-private key and enabling
remote attestation. The egetkey instruction also provides a sealing key that the
enclaves can use to securely seal secrets for untrusted persistent storage.

SGX enclaves have been compromised in numerous ways over the past years,
e.g., memory-safety violations [230], insecure synchronization [384], asynchronous
exception management [89], and side channels [261,317,361,362]. SGX has also been
the target of transient-execution attacks [299,314, 358, 368].

6.2.4 Transient-Execution Attacks

On x86, the instruction stream, once fetched, is decoded into smaller micro-operations
(uops) to simplify the underlying microarchitecture and enable low-level optimizations.
The pops are decoded in-order and executed out of order over the different execution
units, keeping track of the dependencies to satisfy them. The results are committed
in order to the architecture, thus ensuring correctness. Given the highly parallel
nature of modern CPUs, branch prediction has been introduced to avoid stalls,
speculatively executing the predicted path. If the prediction turns out correct, the
speculatively executed pops are committed to the architectural state, while in case
of a misprediction, the results are discarded by the CPU. All non-committed pops
are discarded if exceptions arise during out-of-order execution. Any discarded pop
does not affect the architectural state, but it can affect the microarchitectural state
(e.g., cache state). Such instructions are called transient instructions [61,210,236].

6.3 Software and Hardware Vulnerabilities

In this section, we systematically analyze existing documented CPU vulnerabilities
on x86 CPUs, showing that the underlying root causes are the same as for software
vulnerabilities. We demonstrate that the CWE classification of software vulnerabili-
ties can be applied both to transient-execution vulnerabilities as well as architectural
CPU vulnerabilities. Table 6.1 provides this classification.

6.3.1 Types of Vulnerabilities

For a long time, system security relied on the correctness of the underlying hardware,
ignoring the possibility of security vulnerabilities on the CPU [202]. With the
discovery of transient-execution attacks [210,236], this view has changed drastically.
Since the first publication of such attacks, numerous vulnerabilities have been
discovered in CPUs [59,61,298,299, 314, 358,359, 368]. However, transient-execution
attacks are neither the only nor the first discovered CPU vulnerabilities. The history
of CPU vulnerabilities that affect a large number of users goes back to well-known
bugs such as the Intel Pentium FDIV bug [75] described in 1995 or the Intel FOOF

6.3 Software and Hardware Vulnerabilities 120

Table 6.1. Classification of transient and architectural vulnerabilities according to CWE
originally targeted at software vulnerabilities. CWE-441 has no architectural counterpart
yet. APIC Leak represents the architectural counterpart for CWE-665.

Vulnerability Type Transient Vulnerability Architectural Vulnerability
CWE-416 Use-after-free ZombieLoad [314], RIDL [368], iTLB multihit [184]

Fallout [59], Spectre-STL [166]
CWE-441 Confused Deputy SWAPGS [245] -

CWE-119 Out-of-bounds Operation Spectre-PHT [210], Spectre GPU cache-line leak [183]
v1.1 [205], Meltdown-BND [61]
CWE-843 Type Confusion Foreshadow-VMM [386] FOOF bug [79]
CWE-682 Incorrect Calculation LVI-FP [298] Plundervolt [270],
VOLTpwn [201], VoltJockey [296],
FDIV bug [75]

CWE-362 Race Condition Meltdown [236], Foreshadow [358] AMD Ryzen IRETQ bug [102]
CWE-691 Insufficient CF Manage- Spectre-BTB [210], Spectre- Skylake bug [231]
ment RSB [216,248]
CWE-74 Improper Neutralization LVI [359] SEVerity [266]
(Injection)
CWE-665 Improper Initialization CrossTalk [299], Medusa [264] EPIC Leak (this chapter)

bug [79] described in 1997. These bugs did not pose a significant security risk back
then. However, today, with cloud computing and trusted-execution environments,
such small bugs would be exploitable. DVFS attacks [201,270,296] can induce a
similar effect as the FDIV bug by causing wrong results in multiplications (instead
of divisions), which has been used to break the confidentiality and integrity of
Intel SGX. Similarly, LVI-FP [298] induced wrong floating-point calculations in the
transient domain, which has been exploited to disclose arbitrary memory in the
browser. Hence, as we have seen with software, simple bugs can become exploitable
vulnerabilities when exploitation techniques improve [168,323].

When analyzing existing CPU vulnerabilities, we can—at the high level-categorize
them into architectural and transient vulnerabilities. Architectural vulnerabilities
are exploitable by relying only on architecturally-defined interfaces and features.
Transient vulnerabilities do not have an architecturally-visible effect as they are only
visible on the microarchitectural level and hence require side channels to observe
them.

Architectural Vulnerabilities. Architectural vulnerabilities are visible without
requiring any further indirection or side effects. x86 CPUs have been affected by
several architectural vulnerabilities over the years. Vulnerable components in the
architecture may incur invalid states due to design or implementation errors from
the manufacturer, causing unwanted behaviours like system hangs, shutdowns, or,
in the worst case, undefined states possibly exploitable. For example, the FOOF
bug was triggered by an invalid opcode that led to the lock-up of the CPU until
it was rebooted [79]. The FDIV bug is in this category as well, as it simply
provides wrong results for specific operands provided to the floating-point division
instruction [75]. Although well-known, these bugs are not the only architectural
CPU vulnerabilities. Many architectural bugs were never documented but only
mentioned in CPU erratas [183,184]. The specification update for the 11*" generation

6.3 Software and Hardware Vulnerabilities 121

of Intel CPUs (released 2020) already contains 73 errata. While many of these
errata might not be exploitable, e.g., incorrect values reported or failure to resume
correctly from sleep states, the missing details make it impossible to guarantee non-
exploitability. Recent vulnerabilities that have been found mostly by researchers [102,
183,184,201,231,266,270,296] are exploitable, though. These vulnerabilities allow
an attacker to crash a system [102, 184], leak data from parts of cache lines of a
different security domain [183], modify computation results in a different security
domain [201,266,270,296], or change the control flow of a different application [231].
Although all these bugs are observable on the architectural level, understanding the
root cause is often still difficult [218]. Moreover, while it is often not difficult to
trigger the bugs, it is extremely difficult to exploit them in a reliable way that goes
beyond a denial-of-service attack [102,184,218,231].

Transient Vulnerabilities. Transient vulnerabilities are not directly visible
on the architectural level, as they affect the microarchitecture. Observing these
vulnerabilities requires a side channel [61]. Well-known transient vulnerabilities
include Spectre [210] and Meltdown [236]. Meltdown-type attacks exploit de-
layed exception handling in out-of-order execution, while Spectre-type attacks
leverage branch mispredictions. To leak data from the transient domain, the se-
cret data is encoded into microarchitectural elements not cleared upon discard-
ing transient instructions and transferred to the architectural state via a covert
channel [35, 163, 234, 315, 383,394]. As these vulnerabilities require indirect ob-
servation, they are much harder to detect accidentally. Similar to architectural
vulnerabilities, many of them might not be exploitable [61]. However, as with
architectural vulnerabilities, several of these vulnerabilities have been exploited
successfully [35,59,166,205,210,216, 236, 248, 298,299, 314, 358, 359, 368, 386]. These
vulnerabilities allow an attacker to read architecturally inaccessible data from the own
process [166,210], change the transient control flow of processes [205,210,216,248|,
inject data into the transient domain [298,359], and leak data from different security
domains [59,236,299, 314,358,368, 386]. The last generation of Intel CPUs (Sunny-
Cove-based CPUs) is not vulnerable to Meltdown-type attacks due to in-silicon
mitigations.

6.3.2 Classification of Vulnerabilities

For software (and now also hardware) vulnerabilities, there is the CWE (Common
Weakness Enumeration) classification. This classification contains more than 900
categories of vulnerabilities [351]. Intuitively, one would assume that the hardware
vulnerabilities cover CPU vulnerabilities. However, while they are indeed classified in
the hardware-bug categories in the CWE, sometimes even with their own categories,
we argue that these categories are not necessary to enumerate the vulnerabilities.
Looking at modern CPUs, they are designed using hardware-description languages
(HDLs) [352]. Hence, CPUs can, to some extent, also be considered as software.

Our analysis shows that the underlying root causes of CPU vulnerabilities are
not so different from (complex) software vulnerabilities. Thus, they can be classified
using the existing software-vulnerability categories (cf. Table 6.1). This classification
works both for architectural and transient vulnerabilities.

6.3 Software and Hardware Vulnerabilities 122

Out-of-bounds Operation (CWE-119). The transient-execution attack Spectre-
PHT [61,210] can be classified under CWE-119 “Improper Restriction of Operations
within the Bounds of a Memory Buffer”. The description of this category states:
“The software performs operations on a memory buffer, but it can read from or write
to a memory location outside of the intended boundary of the buffer.” [351], which
is precisely what is happening in Spectre-PHT, except that it is not the software
but the CPU. Meltdown-BND [61] exploits a similar problem, where the hardware
transiently ignores the bounds check for a buffer. Although there are not many
details, the architectural vulnerability Intel SA-00219 [183] also fits into this category.
On affected CPUs, the integrated graphics card has an incorrect bounds check that
allows reading the first 64 bit of a cache line used inside SGX enclaves.

Use after Free (CWE-416). According to Schwarz et al. [314], the root cause of
the transient-execution attacks known as microarchitectural data sampling (MDS) [59,
314,368] is a use-after-free vulnerability in internal CPU buffers. The old content of
these internal buffers, i.e., the line-fill buffer and the store buffer, is used transiently
in a faulting load, although the entry was already free’d by a previously finished
load (or store). Similarly, in Spectre-STL [166], the CPU uses old stale memory
locations that should have already been overwritten by newer stores, i.e., it reads
from a resource that was already “released”. The iTLB multihit vulnerability [184]
is an architectural instance of a use-after-free vulnerability. In this vulnerability,
the CPU tries to use an old TLB entry that is not valid anymore, while a newer
valid TLB entry already exists for the virtual address. Hence, although the old entry
should have been released by creating the new entry, the CPU still tries to use the
released one, leading to a CPU lockup [184].

Confused Deputy (CWE-441). A confused deputy vulnerability sees an inter-
mediary forwarding a request to a target resource without preserving information
about access permissions of the origin source. When the SWAPGS instruction is
speculatively executed in kernel mode, it swaps the kernel GS register with the user
GS register during the transient window. The transient swap causes the CPU to use
user-provided values in the GS register [245]. The SWAPGS instruction acts as a
confused deputy to the instructions dereferencing GS, leaving no trace of the origin
of the GS value that was coming from userspace and not kernelspace. We did not
identify any corresponding architectural vulnerability in this category.

Type Confusion (CWE-843). In the Foreshadow-VMM [386] variant of Fore-
shadow [358], the CPU suffers from a type confusion in the page-table entry of
a guest page table. On a non-present fault inside the VM, the CPU treats the
page-table entry like a host page table, interpreting the stored page frame number
as a host physical address instead of a guest physical address. The FOOF bug [79]
can also be considered as a type confusion: the CPU locked the bus as it confused
the register access of the opcode with a memory access, preventing the bus lock
from being released as the CPU did not observe the completed memory access.

6.3 Software and Hardware Vulnerabilities 123

Incorrect Calculation (CWE-682). The LVI-FP vulnerability [298] shows that
the transient result of floating-point values can be modified in certain corner cases
where the operation requires a microcode assist. While the calculation is corrected
architecturally, subsequent code that is executed transiently works with incorrect
values. The FDIV bug is the famous example of an architectural incorrect calculation,
where the result of floating-point divisions was incorrect for specific operands [75].

Race Condition (CWE-362). The first Meltdown-type attacks Meltdown-
US [236] and Foreshadow [358] can be considered race conditions. In both cases, the
data is already accessed and forwarded to dependent operations before the CPU
realizes that the virtual address points to architecturally inaccessible data. While
there are not many details available about the AMD Ryzen IRETQ bug [102], it is
very likely a race condition, as it can only be triggered when executing the iretq
instruction on one hyperthread, while running a CPU-bound loop on the other
hyperthread [102]. In this setup, the hyperthread executing the iretq stalls until
the sibling hyperthread pauses.

Insufficient Control-Flow Management (CWE-691). For both Spectre-
BTB [210] and Spectre-RSB [216,248], an attacker can change the transient control
flow unexpectedly. As the CPU does not properly distinguish between different
applications for branch-prediction targets, an attacker can inject an arbitrary branch
target. On Intel Skylake CPUs, there is an architectural vulnerability that is not
well understood but has similar effects [231]. Using 8-bit registers in a tight loop on
one hyperthread can lead to unexpected changes of the instruction pointer on the
sibling hyperthread.

Improper Neutralization (Injection) (CWE-74). LVI [359] injects values
into a victim’s transient data stream. In these attacks, the CPU does not properly
neutralize the input to a faulting (or assisting) load, forwarding unrelated attacker-
controlled data, i.e., dependent operations receive incorrect data. This matches the
description of CWE-74: “The software constructs all or part of a command, data
structure, or record using externally-influenced input from an upstream component,
but it does not neutralize or incorrectly neutralizes special elements that could modify
how it is parsed or interpreted when it is sent to a downstream component.” [351]. On
AMD, there is an architectural vulnerability in this category called SEVerity [266].
Due to missing integrity checks of encrypted memory, an attacker can inject code
into SEV-protected VMs.

Improper Initialization (CWE-665). The CrossTalk [299] transient-execution
attack exploits the improper initialization of the internal staging buffer of the CPU.
This buffer is used for the hardware random-number generator, as well as for the
cpuid instruction. In both cases, only a part of the buffer is used, and the remaining
part of the buffer is not cleared. However, the entire buffer is transmitted to the line-
fill buffer, from where the improperly-initialized buffer can be leaked via RIDL [368]
or ZombieLoad [314]. In this chapter, we show the first architectural vulnerability in
this category. We show that the reserved part of the APIC registers on Ice Lake and

6.4 AEPIC Leak Overview 124

Alder Lake CPUs are not properly initialized, leaking stale data that was loaded
from or stored to the LLC cache.

6.3.3 Missing Architectural Counterpart Discovery

Except for CWE-665 (Improper Initialization) and CWE-441 (Confused Deputy),
we identified both transient and architectural vulnerabilities in every category in
Table 6.1. We target the blank spot in CWE-665 by systematically analyzing the
possible targets for architectural vulnerabilities caused by improper initialization.
We focus on data loads where the underlying data structure is larger than the
loaded data. For this, we focus on the I/O address space. As data leakage from
valid memory addresses would have already been discovered, we do not expect any
architectural vulnerabilities there. Similarly, previous work investigated the address
space of model-specific registers [108] without discovering any data leakage.

In our experimental setup, we iterate over the entire I/O address space by
mapping the address space page-by-page into the user space. Similarly to the
approach described by Moghimi et al. [264], we groom microarchitectural buffers on
the hyperthread while reading from the I/O address space. The grooming application
simply reads and writes known data, ensuring that they end up in the store buffer, fill
buffers, and cache hierarchy. If a value read from the 1/O address space matches the
known data, the physical address is reported as a potential source of data leakage.

Such a scan takes around 3 h to 4 h depending on the system we tested. On all Ice
Lake and Alder Lake CPUs, this scan reported a physical address that architecturally
leaks data from the sibling hyperthread: 0xFEE00000. In Section 6.4, we provide an
analysis of this architectural information leakage, showing that it is indeed caused by
improper initialization. The scanning also led to several crashes, e.g., when reading
from the Serial IO GPIO host controller. As scanning is only possible from ring 0,
i.e., the kernel, we do not consider this behavior security-relevant. While reading
from address 0xFEE00000 is also only possible from the kernel, such an attacker is
valid when attacking SGX enclaves.

6.4 APIC Leak Overview

In this section, we introduce APIC Leak, an architectural vulnerability in Intel
CPUs that exploits undefined behavior in the APIC to leak data from the cache
hierarchy. We provide an overview of APIC Leak in Section 6.4.1, its threat model
in Section 6.4.2 and analyze the root cause in Section 6.4.3. Based on the analysis,
we introduce required building blocks for exploitation in Section 6.4.4.

6.4.1 Attack Overview

Figure 6.1 shows a high-level overview of APIC Leak. APIC Leak leaks values by
architecturally reading the undefined range of APIC registers from ring 0, i.e., the
OS. Accessing bytes 4to 15 of each 16 —byte register results in undefined behavior
according to Intel [182]. This undefined behaviour includes reading either zeros or
0xF'F, system hangs, or triple faults on most CPUs. However, as discovered via the
I/O address-space scan (cf. Section 6.3.3), this is not the case on Sunny-Cove-based

6.4 AEPIC Leak Overview 125

Table 6.2. Subset of tested CPUs and whether they are vulnerable (v') or not (X) to /EPIC
Leak. All tested Sunny-Cove-based CPUs are vulnerable.

CPU Microarchitecture Based on AEPIC Leak
Core i3-1005G1 Ice Lake Sunny Cove v
Core 15-1035G1 Ice Lake Sunny Cove v
Core i7-10510U Comet Lake Skylake X
Core i5-1135G7 Tiger Lake Willow Cove X
Core i9-12900K Alder Lake Sunny Cove v
Xeon Platinum 8375C Ice Lake SP Sunny Cove v
APIC Victim (SGX)
é 777 L3 load/store
7 &
S
[O
2 §
o

Attacker

Figure 6.1. AEPIC Leak reads a reserved part of an APIC register. The APIC uses the
superqueue between L2 and LLC to transfer the data to the core. The reserved parts
do not overwrite the superqueue entry, exposing stale values from previous reads and
writes of other applications to the attacker.

CPUs. Instead, stale data from the superqueue is returned. Accessing any defined or
undefined register in the byte-range 4-15, with a load width between 1 and 4 bytes,
returns such stale data. Hence, APIC Leak can atomically leak a 32-bit value per
read. Load widths of 8 bytes or more return 0xFF, and thus do not leak data.

The uninitialized data returned from AEPIC Leak is not restricted to any security
domain, ¢.e., the origin can be user-space applications, the kernel, and, most impor-
tantly, SGX enclaves. Our hypothesis is that the invalid offsets in APIC registers are
not properly initialized, i.e., zeroed. Our experiments indicate that the superqueue
is used as a temporary buffer for APIC requests. The superqueue entry contains
stale data of recent memory loads and stores that traveled from the L2 to the L3 or
the other direction. The APIC only overwrites the architecturally-defined parts of
the register and leaves the stale values in the reserved part.

There is no correlation between the APIC register used for leaking data and
the leaked data. Reading any reserved address within the APIC range 0xFEE00000-
O0xFEEOO3FF leads to the same leakage. The only control over the leaked data
is the cache-line offset. The cache-line offset of the used APIC address always
matches the cache-line offset of the leaked data, which is also the case for MDS
attacks [59,314, 368].

As valid APIC register parts overwrite the stale value, the leakage pattern is as
illustrated in Figure 6.2. For every 16 B block, the first 4 B contain valid APIC data,

6.4 AEPIC Leak Overview 126

0x0 0x10 0x20 0x30 0x40

Cache line

[] Valid APIC offset [] Leakable bytes

Figure 6.2. Leakable bytes in a 64-byte cache line.

followed by 12 B stale data. Hence, APIC Leak deterministically leaks 48 B from a
cache line. Another limitation is that AAPIC Leak only leaks even cache lines, i.e.,
cache lines that start at an address that is a multiple of 128. As cache line pairs
are typically transferred in pairs [181], we hypothesize that the second cache line is
transferred first and then immediately overwritten by the first cache line, leaving
only the stale data of the first cache line in the superqueue. Still, the leakage of
EPIC Leak covers 37.5 % of any page. Section 6.5 shows that this is sufficient to,
e.g., extract AES-NI keys from SGX enclaves, and presents different techniques to
circumvent this limitation. However, this is exactly what we propose to leverage, to
mitigate EPIC Leak at the software level (cf. Section 6.6.3).

6.4.2 Threat Model

Following most microarchitectural attacks on Intel SGX, we assume the attacker
can execute privileged native code on the target machine. At the hardware level, we
assume a Sunny-Cove-based Intel CPU (e.g., 10" and 12" generation code name
“Ice Lake” and “Alder Lake” and 3" generation Xeon scalable “Ice Lake SP”). These
CPUs are not vulnerable to any Meltdown-type attacks, such as Meltdown [236],
Foreshadow [358, 386], RIDL [368], or ZombieLoad [314]. APIC Leak observes
memory operations inside an Intel SGX enclave. We assume either a malicious
hypervisor targeting secrets in guest enclaves or a privileged attacker willing to
extract secrets from local enclaves, e.g., bypassing private contact discovery on Signal
Servers [252], leaking DRM secrets or even SGX attestation keys. APIC Leak only
requires the OS or hypervisor to access the physical Local APIC to leak secrets,
with no difference between the two settings. The attacker is either running on the
same physical core, either on the sibling logical core or on the same logical core,
e.g., if hyperthreading is disabled. While SGX enclaves can detect if hyperthreading
is enabled during remote attestation [177], there is no recommendation to disable
hyperthreading on CPUs with silicon fixes against Meltdown-type attacks. Thus,
on Sunny-Cove-based CPUs, hyperthreading can be enabled. Still, even without
hyperthreading, /APIC Leak can leak memory operations inside an SGX enclave,
just with a reduced leakage rate.

In line with the SGX threat model, an attacker can rely on arbitrary operating-
system features, such as the modification of page-table entries [362], the precise
interrupts of enclaves using timer interrupts [360], or the execution of privileged
SGX instructions, such as EWB to evict EPC pages.

Virtualized Environments. A malicious virtual machine with access to the
host Local APIC could exploit APIC Leak to observe data from other tenants or

6.4 AEPIC Leak Overview 127

the hypervisor. However, no hypervisor we analysed exposes direct access to the
host Local APIC. Usually, the APIC MMIO region, when enabled, is emulated by
the hypervisor by intercepting the accesses to the region and managing the virtual
interrupts [350]. In case Intel APIC virtualization (Intel APICv [182]) is enabled, the
physical CPU emulates APIC functionality for the virtual CPUs in dedicated pages.
We empirically verified that AAPIC Leak does not work with APIC virtualization
and APICv mode to leak from a guest VM. Thus, APIC Leak does not allow guest
virtualized systems to leak data. On the contrary, a malicious hypervisor could
leverage APIC Leak to leak secrets from guest VMs, leveraging its own Local APIC,
irrespective of the guest APIC configuration.

Other Vendors and CPUs. We tested all Intel Core microarchitectures from
Sandy Bridge (2"¢ generation) to Alder Lake (12" generation), and AMD CPUs from
Zen to Zen 3. We did not discover any vulnerable CPU other than the ones based
on Sunny Cove. Table 6.2 reports a subset of the CPU we tested, see Appendix G.3
for the full list. We observe hangs or reads of 0x00 or 0zFF on unaffected CPUs.

6.4.3 Leakage Analysis

In this section, we analyze the leakage of APIC Leak, i.e., from which microarchitec-
tural element the data originates. We designed several experiments that show how
the leakage source of EPIC Leak is different from previous microarchitectural attacks
and demonstrate that APIC Leak allows picking up stale values from the superqueue.
We performed our tests on an Ice Lake Core i5-1035G1 machine, with Ubuntu 20.04.1,
kernel 5.4.0-96, and the last microcode update installed (cf. Table 6.2).

6.4.3.1 Ruling out Microarchitectural Elements.

As we cannot directly observe from which microarchitectural element APIC Leak
leaks, we instead rule out microarchitectural elements from which APIC Leak
does not leak, expanding and systematizing the methodology from Schwarz et al.
[314]. Our methodology is general to be applied to the study of the leakage of
other CPU bugs. In this section, we describe the experiments we designed for all
microarchitectural elements that are not involved, i.e., where APIC Leak still leaks
the targeted data after clearing or circumventing them.

L1 Data Cache. By flushing the L1D via MSR_0x10B [177] and disabling hyper-
threading, we ensure that the targeted data is not stored in the L1 while being
leaked.

Line-Fill Buffer and Load Ports. We use the software sequences provided by
Intel [192] to clear intermediate buffers, including the LFB and load ports, and still
leak values.

L1 Instruction Cache. APIC Leak leaks code and data, which travel through
different paths in the hardware (e.g., code does not go through the LFB). It is

6.4 AEPIC Leak Overview 128

unlikely that both paths (L1D and L1I) are affected and we see some combined
leakage. Thus, we rule out the L1 cache and its line fill buffer.

Store Buffer. APIC Leak is not limited to store operations but also leaks memory
loads. Thus, we can eliminate the store buffer as leakage source. Moreover, APIC
Leak cannot leak transient stores which are only stored in the store buffer [59].

L2 Cache. /AEPIC Leak cannot leak data that is kept in L2 and not evicted towards
L3. Thus we can exclude stale data in L2 as the source of leakage.

L3 Cache. AEPIC Leak does not leak data kept in L3 while being exclusively used
by other cores, and thus, not loaded towards the local L2 cache. This rules out all
CPU caches.

Ring Bus. APIC Leak cannot leak values processed by the GPU or from LLC
slices exclusively used by other physical cores, also ruling out the ring bus. Moreover,
EPIC Leak also works on Xeon CPUs without a ring bus [127].

Staging Buffer. APIC Leak does not leak values from cpuid or rdrand, ruling
out the staging buffer.

Memory. We also rule out the DRAM and memory controller by marking a
memory region as uncachable to ensure that every store and load circumvents the
cache hierarchy. PIC Leak does not leak these loads and stores.

System Agent. As APIC Leak does not leak values from PCI devices, we exclude
this subsystem as leakage source.

Our experiments rule out the known internal buffers up to the L2 cache and the
components in the uncore subsystem. Thus, we hypothesize that the leakage source
is the internal buffer between the L2 and LLC cache, i.e., the superqueue. We
achieve the best leakage when building eviction sets that evict data from L2 but
not from L3, and when relying on cache-line bouncing [256]. In both cases, the data
deterministically moves through the superqueue between L2 and L3.

6.4.3.2 Performance Counter Analysis.

AEPIC Leak does not trigger an architectural fault when performing a load instruction,
even on reserved and undefined offsets of the MMIO region. However, we observed
subtle microarchitectural differences when performing a load from a 16 B-aligned
offset, whether it contains defined data or has been reserved by the specification.
For every load to a reserved or undefined region, we observe a higher latency
(437 cycles (n = 1000, 0z=0.57)) in contrast to a valid offset (47 cycles (n =
1000, 07=0.03)). The MACHINE_CLEARS.COUNT performance counter indicates that
the invalid load triggers an exception not forwarded to the architectural level.
Furthermore, OFFCORE_REQUESTS_QUTSTANDING.X performance counters indicate
that the core sends offcore requests as the loads are not satisfied by the local

6.4 AEPIC Leak Overview 129

' Core ! RAM

| 0 aa) 1 EWB

| = — — I

RIS gl |F | O
IR IR =] = &
B - SR D (P, | &
| ‘—i__.

B[]] SR

! g M3 %;__%_O ELDU

I M en | = H ST

o 8] |2 | ST e P

[+ o) I =

| = m | oS}

| 2 Z)o LE @) = %)\ E(Pl)

l e Q 2 |

LB l

| IS i SR D SR

Figure 6.3. When executing the ewb instruction, a transparently encrypted page gets
re-encrypted and moved to the non-EPC main memory. During this process, the
unencrypted content of the page flows through the cache hierarchy. Vice versa for
decryption with the eldu instruction.

APIC, increasing the CYCLE_ACTIVITY.STALLS_X and, hence, the observed access
time. As the data is not in any cache (and the PTE marked uncachable), the miss
creates an entry in the superqueue and allocates a line fill buffer [232]. Table G.2
in Appendix G.3 gives an overview of all performance counters that show differences
for defined and undefined offsets.

6.4.4 Building Blocks

Reading from a reserved part of the APIC does not provide any control over which
cache line is leaked. However, we introduce three building blocks to influence which
cache line is leaked. First, we force the target lines into the superqueue. Second, we
increase the leakage of the specific target line. Finally, we extract the target line
from the noisy measurements.

Forcing Data into the Superqueue. To target specific data, APIC Leak first
forces target cache lines into the superqueue. Van Bulck et al. [358] demonstrated
that ewb and eldu swapping instructions bring plaintext data into the L1 cache
while moving EPC pages. As the EPC pages are copied from memory to the L1
cache, and back from the L1 cache to memory, the—at this point unencrypted—data
also travels through the superqueue. Hence, an attacker can bring data from an
arbitrary enclave page into the superqueue using these instructions (cf. Figure 6.3).
EPIC Leak uses a modified version of the Linux SGX driver to identify the enclave
coupled with a target process and continuously swaps the target pages of the enclave.
There is no need for APIC Leak to run in the same or parallel hyperthread of the
victim process, as the EPC swapping mechanism works independently from the
enclave owning the page. Furthermore, as the EPC memory is persistent during
the enclave’s existence, AAPIC Leak does not require the enclave to be active, i.e.,
executing ECALLs during the leak. We refer to this technique as Enclave Shaking.
Direct integration into the driver allows targeting an arbitrary enclave on the system,
including Intel’s quoting enclave.

6.4 AEPIC Leak Overview 130

Increasing the Leakage. While Enclave Shaking forces data from an EPC page
into the superqueue, there is no control over which cache line is leaked. To solve
that problem, we introduce Cache Line Freezing, a novel technique that provides
control over which cache line of the page is leaked. Cache Line Freezing exploits
that the cache access pattern of the hyperthread running in parallel to the attacker
influences which entry is used, and thus leaked, from the superqueue.

Counterintuitively, Cache Line Freezing continuously accesses a page offset x of
unrelated pages to increase the probability of leaking the cache line at the same
offset x in the enclave. Specifically, the parallel hyperthread evicts the cache set of
the target cache line with a crafted eviction set made up by continuously accessing
several contiguous zero-filled pages at the same page offset of the target line. In our
setup, it is sufficient to keep iterating over 256 virtually-contiguous pages at offset z,
to trigger the effect.

The access pattern ensures that zero-filled cache lines with the same offset as the
target cache line are continuously evicted from the L2 cache, and thus interact with
the superqueue. Note that Cache Line Freezing does not work if the cache lines of
the eviction set are set to values different from ‘0’, or if their pages are all mapped
to the kernel zero-page, i.e., have never been written.

While the exact interaction of Cache Line Freezing with the superqueue is
unknown, we hypothesize that zero-filled loads and stores are optimized. This would
be in line with the observation that Ice Lake can eliminate stores of ‘0’s to cache
lines that only contain ‘0’s [112]. Furthermore, we observe that if only one half of
the cache lines of the eviction set is filled with zeros, we can only leak that same half
of the target line with this method. This indicates that the granularity of this zero
optimization is 32 B, in line with the memory bus width [181]. We assume that the
zero data is marked differently in the superqueue, i.e., only in the metadata without
overwriting the entry. As a result, the eviction set keeps the entry in the superqueue
used without overwriting it. Thus, stale data is preserved over a longer duration,
increasing the probability to leak it. Notice that Cache Line Freezing is the only
building block of APIC Leak where enabling hyperthreading has an impact. When
hyperthreading is disabled, Cache Line Freezing must interleave with the attacker
process on the same logical core, reducing its efficacy.

Cache Line Freezing allows an attacker to precisely select which cache line
numbers to leak from the victim, and thus, to control which line is sampled. In
case Cache Line Freezing is not leveraged, APIC Leak would simply degrade to a
sampling-based attack, similarly to MDS attacks, and additional techniques might
be needed to reconstruct the original order of the leaked data [314,368].

Extracting the Target Line. In addition to the content of the target cache
line of the targeted EPC page (CLiarget), unrelated values are leaked. Unrelated
values include code and data involved in swapping pages and leaking values as well
as data from general system activity. Since APIC Leak is an architectural bug
that deterministically reads stale data in the superqueue, the only noise it incurs is
leaking such unrelated values. To filter these values, we establish a noise profile by
leaking the content of the cache line with the same cache-line index from a different
EPC page (CLypoise). Based on this noise profile, we can remove all values that have

6.5 /EPIC Leak Exploitation 131

a similar frequency for CLysise and CLgarget. These values are likely independent
from the content of the EPC page. Infrequent values that only occur for CLygise OF
CLtarget are likely secret-independent values from other applications or the OS and
can thus also be ignored. The remaining values observed for CLyaget are sorted by
frequency. The value occurring with the highest frequency is likely the actual value
of CLtarget-

Due to the zero optimization (cf. previous paragraph), APIC Leak cannot directly
leak zero-filled blocks, as they are not stored in the superqueue. Instead, APIC
Leak can infer that a cache line contains zeros if there is not a single value with a
distinct frequency, i.e., the two most-frequent values have a similar frequency.

6.4.5 Performance Evaluation

To evaluate EPIC Leak’s leaking characteristics, we set up a debug enclave that
generates secret data via the rdrand instruction. This data is generated during an
initial ECALL, and the page is targeted with APIC Leak. To verify the correctness
of the leaked data, we use the edbrg to read the generated page from the debug
enclave after the leakage to ensure no other source is contributing to the leakage.
Repeating each cache line leak 2000 times, we achieve a leakage rate of 334.8 B/s
with an average error rate of 7.8 % (n = 100, o = 2.4%). Decreasing the number
of repetitions to 200, the leakage rate increases to 1.76 kB/s with an average error
rate of 16.0% (n = 100, o = 4.1 %) due to the increased noise of unrelated values.
Note that in contrast to transient-execution attacks, all leaked values are correct.
Noise only refers to data of other applications. Due to EPIC Leak limitations (cf.
Section 6.4.1), this approach leaks 37.5 % of a page. This percentage can be further
extended by combining different exploitations techniques, as we show in Section 6.5.

6.5 ZAPIC Leak Exploitation

In this section, we describe three attacks leveraging /EPIC Leak against SGX enclaves.
While in theory, AAPIC Leak could leak memory from VMs or the hypervisor, no
major hypervisor maps the host APIC MMIO region in the guest. We evaluate our
attacks on the Ice Lake Core i5-1035G1.

6.5.1 Attack Techniques

We describe two attack techniques with APIC Leak. We either target the data
section of an enclave to leak secret data at rest, or we target the SSA area to leak
data in use in the registers. Due to the limitations of which cache-line parts APIC
Leak can leak (cf. Section 6.4.1), the most effective technique to leak the target
secret depends on the victim application. We observe no difference while leaking
data from debug, pre-release or release enclaves.

Leaking Data and Code Pages. The straightforward use case for AAPIC Leak
is to combine Enclave Shaking and Cache Line Freezing to leak the data (and code)
at rest of an SGX enclave. With Enclave Shaking and Cache Line Freezing, we
target every cache line of a target page to leak 48 B of each even cache line within

6.5 /EPIC Leak Exploitation 132

Table 6.3. Leakable SSA registers. For underlined GP-registers (e.g., rdi) /EPIC Leak can
only leak the upper 32-bit as the lower 32-bit are overshadowed by valid APIC registers.

Class Registers

General Purpose rdi r8 r9 r10 ri1 r12 ri3ri4
SIMD xmmO-1 xmm6-9

the page. This results in an overall leakage rate of 37.5% of the page content. We
repeat this process for each enclave page to recover a memory dump of an enclave.
This technique is usable while the enclave is not running, resulting in a consistent
state of the enclave data.

Leaking Register Values. Although APIC Leak only leaks values from the
superqueue, we can also use it to leak register values. During an asynchronous
event, e.g., an interrupt, the hardware stores the current enclave registers in the
SSA. Hence, the current register values are stored in the EPC. From there, we
can again use Enclave Shaking and Cache Line Freezing to target a specific cache
line containing one of the enclave registers and partially reconstruct the value of
this register. Furthermore, by combining APIC Leak with SGX-step [360], we can
precisely single step the enclave, interrupting the enclave after each instruction.
Hence, leaking the partial register state is possible after each executed instruction.
As AEPIC Leak does not require the enclave to run, we can target the SSA page
with no timing restrictions, potentially recovering a full register trace of the enclave.
However, due to the leakage limitations, AAPIC Leak is restricted to the registers
specified in Table 6.3.

Based on the register leakage, we identify a generic technique to leak data copied
inside enclaves: the __memcpy function uses the rdi register as temporary storage
to move data from the source over rdi to the destination. Since APIC Leak can
leak the upper 32bit of the rdi register, this allows leaking 50 % of any data copied
with __memcpy inside enclaves.

6.5.2 Breaking AES-NI

Our first attack targets the 128-bit key in the constant time AES encryption provided
by the Intel IPP library [180]. The IPP library leverages AES-NI for cryptographic
primitives. The AES-NI primitives are tightly entangled with the enclave execution
to, e.g., unseal and seal data or transfer data outside the enclave. We use the provided
AES example from the official IPP GitHub repository [190]. The example uses the
ippsAESInit function to initialize the AES context and the ippsAESDecryptCTR
function to decrypt data with the AES counter mode. Leaking the key is possible
either if it is at rest in the data page, or if it is in use in a register.

Key on Data Page. We can dump all the enclave pages after the secret key is
transferred to the enclave and resides in memory. If the attacker knows the memory

6.5 /EPIC Leak Exploitation 133

offset where the key is stored, this offset can be targeted directly. Given that there
is no ASLR in enclaves [319], and the code is typically not confidential [86], this is a
realistic assumption. Depending on the enclave memory layout, this technique has
an ad-hoc probability of 50 % to leak the key: if it is stored in an even cache line,
extracting the key is possible, if it is stored at an odd cache line it cannot be leaked.
In the latter case, an attacker can leak the key when it is in use.

Key in SIMD Register. We assume that the IPP primitives used in an enclave
are usually not modified by an enclave developer. Therefore, we can find the functions
leaking the key without analyzing the remaining enclave. Furthermore, we assume
that the enclave code is not encrypted. For encrypted code, we could first either
leak the decryption key, or simply the decrypted code.

We developed an sgx-gdb [176] script that traces a debug version of the target
enclave. This script prints the content of all leakable registers listed in Table 6.3,
which are stored in the SSA. We identified that the kO_aes_DecKeyExpansion_NI
function, which is independent of the AES implementation, temporarily stores
the AES key in the xmml register. Hence, by interrupting the enclave during
that function, APIC Leak can leak 96 bit of the AES key from the SSA. We can
recover the remaining 32 bit of the key in the k0_aes128_KeyExpansion_NI function.
Furthermore, we also leak 96 bit of the initial value over the xmm0 register in the
kO_EncryptStreamCTR32_AES_NI function. The remaining 32 bit can also be easily
bruteforced, as it is exactly known which bits are missing. On the i9-12900K, we
can evaluate on average 403 million AES keys per second. Hence, in the worst case,
it takes 10.7s to bruteforce the missing bits.

Evaluation. We evaluate APIC Leak with 100 different random keys and try to
leak the AES keys with a single run of the attack. A full key recovery takes on
average 1.35s (n = 100, o0 = 15.70 %) with a success rate of 94 %. In the remaining 6
cases, we leaked unrelated data from different applications. However, as an attacker
can typically restart enclaves arbitrarily often, as it is the case with the Quoting
Enclave, the attack can simply be repeated until the correct key is leaked.

6.5.3 Breaking RSA

To show that APIC Leak is not limited to secrets in single registers, we target
RSA keys from the IPP library reference example [190]. The enclave contains the
secret primes P and @) as well as the private key parts d@, dP and ¢Inv. The
public modulus N is computed in ippsRSA_SetPrivateKeyType2 when initializing
the RSA context.

Key on Data Page. Similar to AES-NI, we can target the memory used to store
the RSA key parts. RSA keys are usually not stored directly in registers and are
larger than 128 bit. Therefore, dumping the enclave data pages already has a high
chance to leak parts of the stored RSA key.

Key in GP Registers. We can leak the RSA primes P and @ during the
calculation of the public modulus N. The bits of the prime numbers P and @

6.5 /EPIC Leak Exploitation 134

temporarily flow through r10 in the function k0_cpDec_BNU, and dP and d(@) in the
function kO_ippsRSA_SetPrivateKeyType2, and thus can be leaked.

Evaluation. We target RSA-1024 and leak 100 random 512 bit RSA primes with
AEPIC Leak. Leaking one of the secret parameters is already sufficient to fully
recover all the remaining parameters and decrypt data. We count the attack on
RSA as successful if we can fully recover at least one of the four RSA parameters.
Leaking the parameters from registers has a success rate of 72 %. The attack takes
on average 81.81s (n = 100, 0 = 48.92%). In 18 cases, the parameters are not
leaked as single-stepping the target instruction fails. In 10 cases, we leak data from
other processes. However, the attack can typically be repeated until the correct key
is leaked.

6.5.4 Breaking SGX Attestation

As previous work [358,367,369], we demonstrate leakage of sealing keys. With
the sealing keys, it is possible to unseal sealed data as well as to decrypt the at-
testation keys, the fundamental security primitives used in SGX. The derivation
process to get access to such a key is done in hardware with the egetkey instruc-
tion [86]. We can target the results of this instruction within the SGX implementation
sgx_unseal_data. This function uses the generated egetkey key to derive the AES
round keys used to unseal the encrypted data.

To test the attack, we build and debug an enclave that uses the sgx_seal_data
and sgx_unseal _data functions to seal and unseal enclave data. By tracing the
occurences of the enclu instruction with rax=1 we can precisly target the egetkey
instruction. By following the hardcoded addresses to this instruction, we can find
the sgx_get_key function without additional debug information. We use the offset
of the sgx_get_key function to monitor its accesses and start EPIC Leak after
observing the first access within our target enclave. From this point, we partially
leak the xmmO and xmm1 registers with Enclave Shaking and Cache Line Freezing and
attack the AES key expansion as demonstrated in Section 6.5.2. We decrypt the
sealed data passed to the untrusted environment with the extracted sealing key.

Extracting the EPID Private Key. We attack the official Intel quoting en-
clave [386] by modifying the untrusted sgx-psw aesmd service. The service handles
the inter-process communication between the various Intel enclaves. In the modi-
fied service, we target the first call to the verify_blob function, which passes the
encrypted EPID private key blob, retrieved from the provisioning enclave to the
quoting enclave. During this ECALL, we use APIC Leak to extract the blob’s
sealing key as described above. We use the extracted key together with the known
zeroed initial value to decrypt the blob with sgx_rijndael128GCM_decrypt, and
successfully verified the tag: as the GCM decryption is authenticated, this proves
that the key is correct. Extracting the EPID keys allows an attacker to forge remote
attestations, breaking the whole SGX system, as enclaves can then be emulated.
Thus, SGX could not be trusted anymore on any platform until the keys are replaced.
In addition, such an attack may also break TDX confidentiality, which bases its
attestation on SGX [187].

6.6 Mitigations 135

6.6 Mitigations

In this section, we discuss mitigations in hardware (Section 6.6.1), firmware (Sec-
tion 6.6.2), and software (Section 6.6.3).

6.6.1 Hardware

As a long-term solution, APIC Leak has to be fixed in hardware. Given that older
Intel CPU microarchitectures are not affected by APIC Leak, we assume that fixing
the issue in silicon is not complex. Similar to uninitialized variables in software, it
might be sufficient to set the most-significant 12 B of any APIC to a defined value,
such as ‘0’ or -1 When accessing the APIC using 64 bit reads, the return for all
reads is already ‘-1’, regardless of whether the address points to a valid or reserved
part of any APIC register. Hence, such functionality to return properly-initialized
data already exists.

6.6.2 Firmware

In addition to hardware, mitigations can also be deployed on the firmware level,
i.e., as microcode update. Based on mitigations for other CPU vulnerabilities [192],
we suspect that mitigations on the firmware level are the most promising mid-
term solutions until the hardware is fixed. Intel can deploy such firmware fixes as
microcode updates distributed and applied by the OS. As the microcode security
version number is part of the SGX attestation [86], enclaves can refuse to run if the
microcode updates are not applied. We propose three approaches to mitigate APIC
Leak name in microcode with different advantages and disadvantages.

Disable SGX. Even if disabling SGX is not a real mitigation, ZPIC Leak only
targets SGX enclaves, thus, microcode can simply disable SGX. Without SGX,
there is no target within the threat model of APIC Leak. Coincidentally, Intel
deprecated SGX on Ice Lake and Alder Lake client CPUs [188]. However, £APIC
Leak is still relevant, as Intel did not deprecate SGX on server CPUs (e.g., Ice Lake
SP). Thus, while exploiting an enclave with APIC Leak would not be possible on
client CPUs (preventing widespread exploitation), it is still possible by using server
CPUs. Leaking the Intel keys on a single up-to-date machine is sufficient to break
the SGX ecosystem, as these keys can be used to emulate attestation. Hence, APIC
Leak must also be mitigated on server CPUs.

Enforce x2APIC. AEPIC Leak exploits that the legacy xAPIC and not the
x2APIC is used on most systems. One of the main differences between xAPIC
and x2APIC is the interface. The xAPIC is accessed using memory-mapped I/O
(MMIO). This is the interface exploited with EPIC Leak. In contrast, the x2APIC
does not support the MMIO interface for performance reasons [175]. Instead, the
communication interface of the x2APIC is based on MSRs. We verified that the
MMIO range is indeed disabled when enabling x2APIC, fully preventing APIC Leak.
Reads from the MMIO range when x2APIC is enabled return -1.

6.6 Mitigations 136

The x2APIC specification [175] states that switching from x2APIC to xAPIC is
only possible by disabling the local APIC unit. As this can only be done by writing
to the IA32_APIC_BASE MSR, a microcode update could enable the x2APIC at boot
and prevent the disabling of the x2APIC. An enforced x2APIC is supported by
Linux (tested on Ubuntu 20.04.1, kernel 5.4.0-96), and ensures that EPIC Leak
cannot be mounted. This solution is the only firmware-based solution that does
not incur any performance penalties. In case enforcing x2APIC mode would not be
possible in microcode, an alternative solution would be to insert the APIC mode in
the attestation process. The enclave attestation may simply fail if x2APIC mode
is not enabled. As a positive side effect to fully mitigating APIC Leak, enforcing
x2APIC might even slightly improve the system performance.

Disable Caching for EPC. The EPC range is by default marked as write-back
memory using a memory-type range register (MTRR). A microcode update could
easily change the memory type for the EPC range to uncachable. As shown in
Section 6.4.3, APIC Leak cannot leak load or stores to uncachable memory. Hence,
an uncachable EPC range would fully prevent EPIC Leak. Costanet al. [87] also
proposed an uncachable EPC range to protect enclaves against cache attacks. While
SGX explicitly supports an uncachable EPC range, it is not clear whether the
memory type is part of the attestation [87]. Moreover, setting the entire EPC range
to uncachable leads to a huge performance impact for enclaves, as no part of an
enclave can benefit from caching anymore.

Flush Caches on EEXIT. As APIC Leak leaks values traveling through the
cache hierarchy, a possible mitigation is to flush all caches on an enclave exit
(EEXIT). However, this is only sufficient if hyperthreading is disabled. With enabled
hyperthreading, AAPIC Leak can leak values from the enclave while it is running.
Flushing caches with the same limitation, i.e., disabling hyperthreading, is also the
state-of-the-art mitigation for L1TF [177] and MDS attacks [179] on affected CPUs.
The state of hyperthreading is already included in the attestation. Hence, SGX
enclaves can also refuse to run if hyperthreading is enabled on the system.

We verified that the already-existing wbinvd successfully prevents the leakage if
hyperthreading is disabled. The wbinvd instruction invalidates all cache levels and
writes modified values back to the main memory. While we did not see any leakage
after invalidating all cache levels, the invalidation is not very efficient. On average,
we measured 321 655 cycles (n = 5000, oz = 406.3) for executing the instruction. As
this invalidation is required on every EEXIT, this mitigation has a huge impact on
ECALL and OCALL latency. However, we expect that as the L1 flush MSR [177],
Intel can implement an L2 flush MSR. As APIC Leak is limited to leaking data
moving between L2 and LLC, an LLC flush might not be necessary. While a huge
performance overhead, such a buffer flushing was also used for L1TF and MDS
attacks.

6.6.3 Software

As the OS or hypervisor are untrusted, mitigations implemented there are ineffective.
However, mitigations can be implemented into the trusted software part of the SGX

6.6 Mitigations 137

ecosystem, such as the enclave itself, or indirectly via the attestation.

Secret Alignment. A limitation of ZPIC Leak is that the first 4 bytes of every
16-byte block cannot be leaked. Hence, we propose a software solution that splits
secrets and stores the parts of the secrets only in these non-leakable 4 bytes. Our
software workaround is similar to the Intel-proposed workaround for SA-00219 [183].
For CPUs affected by SA-00219, no secrets can be stored in the first 8 bytes of a
cache line. Hence, Intel added functionality to the SGX SDK to misalign buffers,
ensuring that they do not start at the beginning of a cache line. For APIC Leak it
is more complicated, as only 4 consecutive bytes can be used, in contrast to the 56
bytes for SA-00219. We propose to rely on AVX scatter and gather instructions to
automatically spread a secret over memory such that only the non-leakable parts
of memory are used. Listing G.1 (Appendix G.1) shows a sample proof-of-concept
implementation for 128-bit secrets, such as AES-NI keys. By relying on the scatter
and gather instruction for single-precision floats, these functions can spread 4-byte
blocks over one cache line. As the source and destination memory addresses are
64-byte aligned, all parts of the secret are overshadowed by valid APIC registers,
hence there is no leakage.

This software workaround protects data at rest, as well as the loading from and
storing to memory. However, there is still a small remaining attack surface left.
When the secrets are already loaded to CPU registers, they are spilled to main
memory on an (asynchronous) enclave exit. As this is done by the hardware, there
is no possibility for the software to protect the secrets at this point. Thus, if an
attacker triggers such an exit in the short time window where the secrets are in
the CPU registers, the attacker can leak up to 96 bits of the secrets via the SSA.
However, as APIC Leak can only leak up to 96 bits of every even cache line, there are
parts of the SSA that cannot be leaked (cf. Section 6.4.1). Hence, if only xmm{2-5}
and xmm{10-15} are used for (round) keys, AES-NI can still be used securely inside
an enclave.

Transient Secrets. As APIC Leak leaks secrets that are moved between the L2
and the LLC cache, a possible software mitigation could also ensure that secrets
never leave the CPU registers and the L1 cache. Previous work showed that it
is possible to implement cryptographic algorithms, e.g., AES, by only using CPU
registers [268]. However, in an enclave setting, an attacker can arbitrarily interrupt
an enclave with high precision [360], forcing every register to be stored to main
memory. Enclaves cannot opt-out from storing certain registers in the SSA [182].
Hence, the only workaround is to ensure that secrets are never architectural. With
Mimosa, Guan et al. [151] leveraged hardware transactional memory to ensure
secrets never leave the private cache and cannot be spilled to memory. Unfortunately,
hardware transactional memory is not available on Sunny-Cove-based CPUs. As a
more obscure variant, an enclave could leverage speculative execution to only work
on secrets in the transient domain [375]. However, this would require an enclave
to mount side-channel attacks to make the computed results visible. Listing G.2
(Appendix G.2) shows a sample code for realising this software workaround for AES
encryption.

6.7 Conclusion 138

6.7 Conclusion

We presented APIC Leak, the first architectural CPU vulnerability that allows
leaking values from the cache hierarchy. APIC Leak works on the newest Intel CPUs
based on Ice Lake, Alder Lake, and Ice Lake SP and does not rely on hyperthreading
enabled. APIC Leak enables attacks against SGX enclaves on Ice Lake CPUs,
forcing specific data into caches and leaking targeted secrets. We show attacks
that allow leaking data held in memory and registers. We demonstrate how APIC
Leak completely breaks the guarantees provided by SGX, deterministically leaking
AES secret keys, RSA private keys, and extracting the SGX sealing key for remote
attestation. We finally propose several firmware and software mitigations that would
prevent APIC Leak from leaking sensitive data or completely prevent APIC Leak.

This chapter showed how CPU vulnerabilities share the same root causes
as software ones. We motivate it, pointing out how modern CPUs are
effectively written as software. We cannot help but notice, though, how the
inner working of modern CPUs is barely documented, and they are often
treated as black boxes. Gaining insights into their inner workings would
allow security researchers to examine the implementation of the defined
CPU abstraction in search of inconsistencies that may result in novel bugs.
In the next chapter, we break down the CPU abstraction and investigate
the internals of modern CPU pcode. We exploit CPU vulnerabilities to gain
control of CPU pucode and propose the first framework to trace and patch
ucode, giving an unprecedented view of CPU internals.

Chapter 7

Reverse Engineering and
Customization of Intel
Microcode

7.1 Introduction

Microcode is the hidden software layer between the instruction set and the underlying
hardware. In most Complex Instruction Set Architectures (CISC), each instruction,
or macro-instruction, is translated into one or more micro-operations (pops) that
are executed by the underlying hardware [161]. In total, there are over 2700 distinct
pops in Intel x86 [199]. Many simple instructions map to a single pop. However,
more complex instructions are essentially entire programs and can map to > 50
pops [182]. Microcode is a crucial optimization for these instructions, as pops are
much simpler to implement in hardware and can be pipelined more efficiently [161].

Microcode is notoriously challenging to verify [92]. Independent auditing of
microcode, subjecting it to static and dynamic analysis, would supplement manufac-
turers’ verification efforts and help build trust in this hidden software. Moreover,
tools enabling such analysis would facilitate research into CPU behavior. Dynamic
microcode tracing, for example, would provide the fine-grained microarchitectural
control that is so elusive in microarchitectural attack research [119] and in CPU
fuzzing for undocumented behavior [106,107,118,211] or hardware defects [222].
Furthermore, the ability to modify microcode would enable research into microcoded
security mechanisms such as microcode-assisted address sanitization and customiz-
able rdtsc precision [213].

Unfortunately, x86 microcode is confidential. Intel partially documented the pop
sequences used for instructions in the Pentium Pro [174], but only pop counts have
been published for instructions on newer CPUs, making reverse engineering research
necessary [1]. Microcode has been reverse-engineered to enable customization on
AMD Opteron [215] and Intel P6 (Pentium Pro to Pentium III) [52]. However, newer
x86 CPUs have much stronger cryptographic protection for microcode updates.
The updates are encrypted and signed to prevent unauthorized patching or reverse
engineering, and the decrypted microcode never leaves the internal buffers of the
CPU. Beyond the protection of intellectual property, security is a powerful motivation

7.1 Introduction 140

for this cryptographic protection. Prior work has explored security concerns around
microcode, such as the potential for backdoors [115,346]. If the update mechanism
were compromised, an attacker could maliciously patch microcode, for example, to
introduce a backdoor to reveal cryptographic keys to JavaScript in the browser [346].
Reverse engineering research must, therefore, carefully balance the potential security
benefits against the potential risks.

In recent years, microcode research has seen a considerable evolution thanks to
the work of Ermolov et al. [123,125,126]. They achieved Red-Unlock on Goldmont
and Goldmont Plus CPUs, a CPU mode that enables JTAG debugging of internal
CPU components using external hardware [123]. Furthermore, they identified
two undocumented instructions accessible on Red-Unlocked CPUs, udbgrd and
udgbwr, that enable read/write access to internal microarchitectural components
from software [126].

Motivated by this crucial breakthrough, in this chapter we build upon their work,
posing the following research questions:

1. What are the semantics of microcode in modern Intel CPUs?
2. Is the microcode update process secure?
3. Could microcode customization bring security or performance benefits?

To answer these questions, we reverse-engineer microcode semantics and recon-
struct microcode patching capabilities. We develop the first decompiler for Goldmont
microcode to analyze how the CPU interacts with its internal components during
microcode updates. We leverage the undocumented instructions to mimic these
interactions to create microcode read and write primitives. Building upon these, we
design and implement CustomProcessingUnit: the first framework for static and
dynamic analysis of Intel microcode, supporting the Goldmont microarchitecture.
Our framework can assemble microcode patches, install these in the CPU and then
trace microcode execution in real-time, enabling CPU debugging at the pop level
without additional hardware.

We leverage our framework to reverse-engineer the confidential Intel microcode
update algorithm and analyze it in depth. For the first time, we perform a public
and independent security analysis of the design and implementation of the update
algorithm on Goldmont, evaluating its attack surface and possible security holes.
Our analysis reveals a minor weakness in the implementation: the update is stored
in the L2 cache during decryption, which is potentially exploitable, although we did
not succeed in doing so. Such analysis is a first step toward independent auditing of
microcode to verify manufacturers’ security claims.

Moreover, in three additional case studies, we explore the benefits of CPU
customization at the microcode level for performance and security. First, we bring
Pointer Authentication Codes [18] to x86 for the first time, presenting a fast microcode
implementation of pointer signing and verification in ~25 clock cycles. We thus
show how we can enhance x86 CPUs with fundamental security concepts from
other architectures. We evaluate the security of our x86 PAC implementation by
reproducing the PACMAN attack [302] for the first time on x86. Thanks to our
framework, we deepen the analysis by investigating alternative PAC implementations

7.1 Introduction 141

that mitigate such an attack at the microcode level, providing the first public PAC
implementation not vulnerable to PACMAN. Second, we design and implement
fast software breakpoints, which we call psoftware breakpoints, to execute the
breakpoint handlers directly in microcode. This provides a speedup of ~1000x over
int3 instructions, showcasing how microcode customization can bring performance
benefits. Third, we patch the div instruction to execute in constant time to
prevent timing side-channel attacks [31], bringing a 1.6x speedup over state-of-the-
art constant-time implementations, improving both performance and security.
In brief, we present the following contributions:

1. We introduce the first framework for static and dynamic analysis of Intel
Goldmont (GLM) microcode for Atom CPUs, featuring support for microcode
tracing and patching to provide complete control.

2. We demonstrate how our framework aids CPU reverse engineering by uncover-
ing the details of the confidential Intel microcode update algorithm.

3. In three further case studies, we illustrate how complete control over microcode
can bring security and performance benefits. We implement Pointer Authen-
tication Codes (PAC) for x86, fast software breakpoints, and constant-time
hardware division.

By sharing this research, we hope to make microcode research accessible to a
broader audience and to help the community improve its understanding of microcode
security guarantees. CustomProcessingUnit is open-source at https://github
.com/pietroborrello/ghidra-atom-microcode (static analysis module) and
https://github.com/pietroborrello/CustomProcessingUnit (dynamic analysis
module). We hope that it will facilitate further auditing of Intel microcode and
inspire the development of additional tooling for other CPUs.

Outline. We provide relevant technical background in Section 7.2. Section 7.3
presents our framework for static and dynamic analysis and describes the reverse
engineering we conducted to create it. Sections 7.4, 7.5, 7.6, and 7.7 provide case
studies of our framework, including reverse engineering of the microcode update
algorithm in Section 7.4. We conclude in Section 7.8.

Ethical Considerations. Before deciding to publish our framework, we assessed
its malicious potential. Our static analysis functionality requires decrypted mi-
crocode and does not compromise Intel’s microcode update encryption and integrity
validation. Our dynamic analysis functionality requires the CPU to be in Red Unlock
mode. The only publicly-known method to achieve this requires exploitation of a
patched vulnerability. It is only feasible on Intel’s system-on-chip CPUs and, in
practice, has been achieved on a small number of devices (see Section 7.2). While
Red Unlock may be achieved on more devices in the future, in our assessment, the
potential security benefits of making microcode analysis accessible to a broader
audience outweigh this risk.

https://github.com/pietroborrello/ghidra-atom-microcode
https://github.com/pietroborrello/ghidra-atom-microcode
https://github.com/pietroborrello/CustomProcessingUnit

7.2 Background 142

7.2 Background

In this section, we introduce the relevant technical background required for under-
standing the rest of the chapter. Note that the relevant background for our case
studies is covered in their respective sections (7.4, 7.5, 7.6, 7.7).

7.2.1 Microcode Structure

The Instruction Decoding Unit (IDU) is the component responsible for translating
CISC instructions to pops. Most Intel CPUs have multiple decoders: several simple
decoders to translate x86 instructions that map to a single pop, a complex decoder to
translate instructions that map to 1-4 pops, and a Microcode Sequencer responsible
for translating microcoded instructions [191,215]. Microcoded instructions are the
most complex instructions that require advanced logic to be executed. Examples are
cpuid that returns detailed information about the CPU and wrmsr that modifies
internal settings in model-specific registers (MSRs).

The microcode is stored in a dedicated read-only memory inside the CPU
(MSROM). Instruction definitions are organized in triads, consisting of three pops
and a sequence word. Sequence words affect the control flow of the executed triad and
can also act as synchronization primitives for the dataflow akin to 1fence instructions.
Goldmont (GLM) CPUs have space for 7936 triads in the MSROM [122].

7.2.1.1 Microcode Patches

Modern CPUs allow the microcode to be updated at runtime with microcode patches.
This enables patching of bugs in complex instructions [75] and implementation of
new features. Thus, the CPU needs a dedicated writable region to hold the patches
(MSRAM). On GLM, there is space for 128 triads in the MSRAM [122]. Updates
are applied either by the BIOS at boot time or by the operating system. For
Intel CPUs, the update routine is triggered by writing the virtual address where
the microcode patch has been loaded to the MSR IA32_BIOS_UPDT_TRIG. Intel’s
updates are signed and encrypted [66,125,158]. For GLM and GLM Plus, Ermolov
et al. documented that the update is RSA signed and RC4 encrypted, providing a
decryption algorithm [124].

7.2.1.2 Microcode Hooks

To run patched microcoded instructions, a microcode hook redirects control flow
from the MSROM to the MSRAM [125,213]. To implement the hooks, microcode
updates set the match registers in the CPU to the microcode addresses that need to
be redirected. Each time the microcode is executed from the MSROM at an address
contained in one of the match registers, the control flow is automatically redirected
to the corresponding patch address in the MSRAM. On GLM, there is space for up
to 64 hooks [122].

7.3 Framework 143

7.2.1.3 Control Register Bus (CRBUS) and Local Data Access Test Port
(LDAT)

The CRBUS is an internal bus that connects all internal CPU units and exposes core
controls and configurations (e.g., control registers and some MSRs are mapped) [126].
Fach unit has its own range of addresses on the bus that can be used to query its
state and update its configuration. It is used by microcode but is not intended
to be architecturally accessible to software. LDAT is a debug interface between
local CPU arrays and the CRBUS that facilitates post-silicon validation [233]. Each
array provides an LDAT port for read/write access over the CRBUS. Combined, the
CRBUS and LDAT provide access to the internal state of CPU core units such as
the Microcode Sequencer, Instruction Fetch Unit, caches, and TLB [51].

7.2.1.4 Red Unlock

This special mode provides access to the CRBUS and LDAT via JTAG using a USB
debug cable or proprietary hardware [126]. In Intel’s threat model, Red Unlock (which
they refer to as ‘Protection Class Intel’) is only possible with Intel’s authentication
key [186]. However, Ermolov et al. published a proof of concept to Red Unlock
GLM by exploiting a (now patched) vulnerability in the Intel Management Engine
(ME) [123]. Leveraging Red Unlock, they exported the MSROM and MSRAM
contents and reverse-engineered the format of pops, providing a disassembler for
GLM microcode. The proof of concept has also been ported to Skylake and Kaby
Lake [5]. In contrast to GLM, this only enables Red Unlock on the ME rather than
the CPU because only Intel’s system-on-chip designs have a shared DFX AGG unit
(and, therefore, a shared unlock state) for the chipset and main CPU cores [126].

7.2.1.5 Undocumented Debug Instructions

Ermolov et al. discovered the existence of two undocumented instructions on Intel
CPUs, udbgrd and udbgwr [126]. These instructions are the final puzzle piece
for microcode customization. On Red-Unlocked CPUs, they can be used to read
and write all of the internal components made accessible by the CRBUS and
LDAT from software without any additional hardware. Crucially, this includes
the Microcode Sequencer arrays [126]. While only GLM and GLM Plus have been
publicly Red-Unlocked, the existence of these instructions on other microarchitectures
has been inferred using performance counters [44]. In this chapter, we leverage these
instructions to create the first analysis framework for observing and modifying CPU
microcode.

7.3 Framework

In this section, we present our framework for microcode reverse engineering and
customization. For static analysis, we develop a Ghidra module to enable microcode
decompilation and reverse engineering. For dynamic analysis, we implement a UEFI
application to trace and patch microcode execution.

7.3 Framework 144

B

vold rcd_decrypt(ulong i,ulong j,byte *ptr.int len,byte *S,Tlong callback)

w

6 [{
7| byte bvarl;
8| byte bvarz;

17 *#ptr = S[bVar2 + bvarll = #*ptr;
18 ptr = ptr + 1;
19 len += -1;

20| } while (len != 0);
21 (*(callback * ox10))();
22 return;l

Figure 7.1. Microcode decompiled within Ghidra using our processor module. This
function, rc4_decrypt, is used in the microcode update routine.

7.3.1 Static Analysis

We leverage the findings of Ermolov et al. [126] to implement a processor module for
the Ghidra decompiler. They provide decrypted GLM microcode and the contents
of the Microcode Sequencer arrays on GitHub [125]. The Microcode Sequencer array
content can also be extracted using CustomProcessingUnit (see 7.3.2).

We define the semantics of each pop by reconstructing their effects from the
naming scheme in the published disassembler (which, in turn, was constructed by
observing the effect of pops on registers and from leaked opcode lists from Intel [125]).
For the pops that were not straightforward to understand, we conduct dynamic
analysis (see 7.3.2) to observe the side effects of these pops in isolation. In total,
we define semantics for 8350 pops in Ghidra’s processor specification language,
SLEIGH [117].

Our static analysis module takes as input the dump of microcode ROM and
RAM (including sequence words) and packs them as a binary blob parsable by our
Ghidra processor module. For each triad, the packer analyzes the sequence words
relative to that triad, and encodes the sequence-word semantics in the respective
uop of the triad. Thus, for each triad of four 48-bit pops (including the nop at the
end) and one 32-bit sequence word, it emits four 128-bit pops to be analyzed by
the Ghidra processor module. Removing the concepts of triads and sequence words
simplifies the design of the Ghidra processor module.

CPU microcode is highly optimized: several basic blocks are shared between
functionalities, there is no distinction between jumps and calls, and basic blocks
are highly interleaved among each other to optimize for code reuse (and thus size)
instead of code locality. The decompiler conducts basic analysis to identify function
boundaries, reconstruct high-level control flow and internal data structures, and cross-
reference these. Figure 7.1 shows an example of clean control flow reconstructed
in Ghidra using our processor module. We leverage our decompiler to analyze
microcode throughout this chapter.

7.3 Framework 145

def ucode_sequencer_write (SELECTOR, ADDR, VAL):
CRBUS[0x6al] = 0x30000 | (SELECTOR << 8)
CRBUS [0x6a0] = ADDR
CRBUS [0x6a4] = VAL & Oxffffffff
CRBUS [0x6ab] = VAL >> 32
CRBUS [0x6al] = 0

with SELECTOR:

2 -> SEQW Patch RAM
3 -> Match Registers
4 -> UCODE Patch RAM

Listing 7.1. Slightly simplified sequence of commands to write the value VAL to the address
ADDR of the selected (with SELECTOR) microcode array. Each CRBUS write is an invocation
of the udbgwr instruction with rcx=0.

7.3.2 Dynamic Analysis

We now introduce our framework’s microcode dynamic analysis module, which is the
first of its kind for Intel CPUs. In this section, we describe the reverse engineering
we conducted to build it, present the implementation details, and customize rdrand
as an example of instruction patching.

Execution Context The module is capable of hooking, patching, and fully
tracing microcode execution. It consists of a UEFI application that runs before
the OS bootloader. This provides a noiseless environment for experiments and
complete control over the system. Alternatively, the same MSR operations could be
implemented in a Linux kernel module, compromising increased noise for a more
feature-rich execution environment.

Hardware Setup All our tests are performed on GLM, namely Intel Celeron
N3350 with cpuid 0x000506C9 and 0x000506CA. We execute all our experiments
with a fixed CPU frequency of 1.10 GHz.

7.3.2.1 Reverse-Engineering LDAT Accesses

We use our decompiler to reverse-engineer the CRBUS access patterns during
microcode updates that allow the CPU to overwrite the MSRAM. Our starting
point is the CRBUS address range mapping to the LDAT port of the Microcode
Sequencer, which has been documented in prior work [51]. By cross-referencing these
addresses with the decompiled microcode, we can find and analyze the microcode
update routine. This lets us interact with the Microcode Sequencer by reproducing
the commands that the update routine sends to its LDAT port. Listing 7.1 shows
our primitive to write to the Microcode Sequencer’s arrays. We build our dynamic
analysis module upon our ucode_sequencer_write primitive, developing a similar
primitive to read from the microcode arrays.

7.3 Framework 146

7.3.2.2 Microcode Hooks

To modify the behavior of an instruction in a custom microcode patch, we need to
configure the match registers to ‘hook’ that instruction. By dumping the content
of the match registers after a regular microcode update has been applied, we can
reverse-engineer the format of the match-register entries. The following snippet
shows how to compute a match entry register to hook an MSROM instruction
address match_address to redirect execution to the MSRAM patch_address:
def compute_match_register (match_address, patch_address):
patch_offset = ((patch_addr - 0x7c00) / 2) << 16;

return (0x3e000000 | patch_offset | match_address |
enabled)

Note that the last bit of match_address overlaps with the enabled bit, which,
when set to 0, disables the hook. The last bit of the match address is ignored by the
CPU, and, to our understanding, only even addresses can be hooked.

7.3.2.3 Microcode Patches

Combined with our static analysis capabilities, we can modify instruction behavior.
To better express the desired semantics of our patches, we develop a microcode
assembler. Our assembler supports most pops and hides complex details such as
instruction addresses and registers by supporting high-level constructs like labels
and variables. Hooks can be generated with the .patch directive to set up a
match-register entry automatically. As pop immediates are restricted to 16 bits, the
assembler also supports macros to deal with 64-bit constants by emitting multiple
instructions. Listing 7.3 shows an example of a microcode routine we can assemble.

7.3.2.4 Microcode Traces

By leveraging microcode patches and hooks, we can obtain microcode execution
traces. We define a specific microcode patch that when executed reads the timestamp
counter of the CPU, saves it in a specific location, disables itself and then continues
execution. The hook disables itself by zeroing out the corresponding entry in the
match register, accessing the CRBUS similarly to our ucode_sequencer_write
primitive. The ability of the hook to disable itself is fundamental to making the
microcode tracing work: the CPU would otherwise enter an infinite loop when
resuming execution at the same address.

We apply hooks that redirect execution to our custom patch to every possible
microcode address. Thus, when executing an instruction I, the framework dumps the
timestamp at which each specific pop has been executed. Since there are a limited
number of match registers, the framework iteratively executes the instruction I,
each time registering a subset of the hooks it needs and collecting subtraces. In our
implementation, we register one hook at a time for simplicity. In a post-processing
stage, we reorder the pops based on the timestamp to obtain an instruction trace.
Since the instruction I is executed multiple times, it must have a deterministic
microcode control flow to obtain a coherent trace.

Algorithm 2 shows the pseudocode of the microcode hook that is installed in the
CPU to collect the timestamp counter and resume execution. Algorithm 3 shows

7.3 Framework 147

Algorithm 2: Pseudocode of the microcode hook that dumps the timestamp
and resumes execution.

// Assume this hook is installed at index
// 0 of the match registers
function dump_ts_and_resume (addr)
saved_ts < read_clock()
// disable hook by overwriting
// the entry
ucode_sequencer_write(
sel: 3, // select match registers
idx: 0, // assume idx O
val: O // O to disable
)

resume_execution(addr)

the pseudocode of the tracing collection stage algorithm. As we can only hook even
microcode addresses, when two even addresses are executed contiguously, we infer
in the post-processing stage that the odd address between the two has also been
executed.

7.3.2.5 Customizing rdrand

With CustomProcessingUnit’s microcode hooking, patching, and tracing capabilities,
we can customize the semantics of x86 instructions. As a proof of concept, we
customize the behavior of the rdrand instruction. In most x86 processors, this
generates a hardware-generated cryptographically secure random number. The carry
flag in the rflags register indicates the success or failure of the operation after
execution.

We trace the execution of rdrand to determine which pop to hook. Listing 7.2
shows the full execution trace. Analysis of the trace shows the semantics of the
instruction reflected in its pops: it reads the hardware-generated random number
by reading I/O port 0x40004e00 at address 0x1866, whose value is returned in
the specified register (uop 0x186a). The carry flag is updated based on the value
returned, conditionally assigning the bit 1 to the temporary register tmp2 (address
0x1869) and updating the rflags register (address 0x18c).

To patch the instruction semantics, we only need the instruction entry point in
the MSROM: address 0x0428. We use CustomProcessingUnit to hook this entry
point and redirect execution to our custom patch in MSRAM. Listing 7.3 shows our
patch to make rdrand return "Hello World!" in the registers rax and rbx. We
verify the patch works by repeated execution of rdrand.

In the following sections, we demonstrate how CustomProcessingUnit facilitates
microcode reverse engineering and customization. We reverse-engineer the confiden-
tial microcode update algorithm and present three other case studies illustrating
how microcode customization can improve software performance and security.

7.4 Case Study: Reverse-Engineering the Microcode Update Routine 148

Algorithm 3: Pseudocode of the microcode tracing algorithm.

function trace_instruction(I)
trace + []
// microcode addresses go
// from O to 0x7c00 in GLM
for addr in 0 .. 0x7c00 do
install_hook(addr)
saved_ts <+ 0
start_ts < read_clock()
// this triggers the dump_ts_and_resume hook if the
microcode of I executes ‘addr‘.
// the microcode hook removes itself and saves the
timestamp in a global variable ‘saved_ts°
execute (I)
end_ts < saved_ts
if end_ts > O then
trace.append(end_ts - start_ts, addr)
return sort(trace)

rdrand_trace:

0428: tmp4:= ZEROEXT_DSZ32(0x0000002b)

0429: tmp2:= ZEROEXT_DSZ32(0x40004e00)

042a: tmpO:= ZEROEXT_DSZ32(0x00000439) SEQW GOTO U1861
1861: tmpl:= READURAM (0x0035, 64)

1862: TESTUSTATE(SYS, 0x20)? SEQW GOTO U1866

1866: tmpl:= PORTIN_DSZ64_ASZ16_SC1(tmp2)

1868: tmpl:= OR_DSZ64(0x00000000, tmpl)

1869: tmp2:= SELECTCC_DSZ64_CONDNZ (tmpl, 0x00000001)
186a: r64dst:= ZEROEXT_DSZ32N(tmpl)

186c: MOVEINSERTFLGS_DSZ32(tmp2) SEQW UENDO

Listing 7.2. pop execution trace of the rdrand instruction.

7.4 Case Study: Reverse-Engineering the Microcode
Update Routine

The details of the decryption and validation performed in the microcode update
routine are not documented by Intel [182]. An Intel patent describes that the patch
is validated in a secure memory separate from the microcode RAM and is encrypted
using public-key encryption. In particular embodiments, a private key and public
key hash value are embedded within the CPU, and the patch is signed with 2048-bit
RSA [347]. Experimental timing and fault analysis in prior work supports the
hypothesis that 2048-bit RSA is used to sign a padded SHA2 digest [66, 158].

We leveraged the microcode tracing and decompilation capabilities of Custom-
ProcessingUnit to precisely reverse-engineer the full microcode routine for patch
decryption and verification. We release our microcode decryptor and parser along
with CustomProcessingUnit. Concurrently to our work, Ermolov et al. released a

7.4 Case Study: Reverse-Engineering the Microcode Update Routine 149

.org 0x7c00

.patch 0x0428 # RDRAND ENTRY POINT

rax:= ZEROEXT_MACRO(0x6f57206f6c6c6548) # "Hello Wo"
rbx:= ZEROEXT_MACRO(0x21646c72) # "rld!'\\x00"

Listing 7.3. rdrand patch that makes the instruction return “Hello World!” in the registers
rax-rbx.

’ WImsr }—»’ move ucode patch to 0xfeb01000 ‘

‘ metadata H /H/O/DCG ‘ RSA mod H RSA exp H RSA sig\H\licode patch

’ SHA256 ‘ ’ check ‘

‘ CPU secret H nonce ‘ CPU secret ‘

I
’ key expansion }—»‘ RC4 key }—>’ decrypt }—»’ parse ucode ‘
| l

discard first ’ SHA256 H RSA verify ‘
0x200 bytes AA A

Figure 7.2. High level overview of the ucode update algorithm for GLM CPUs.

tool to decrypt microcode updates based on their GLM reverse engineering [124].

7.4.1 Reverse Engineering

A microcode update is triggered by writing the linear address of the microcode update
loaded in memory to the TA32_BIOS_UPDT_TRIG MSR. To trace the update with our
microcode tracer, we need to repeat the instruction sequence (see Section 7.3.2.4).
Since the same pcode update cannot be applied multiple times, and applying a pcode
update would override the MSRAM and match register that we use for tracing, we
must corrupt the microcode update so that the update fails.

We corrupt the single byte that produces a failing update with the maximum
latency. Intuitively, the failing update with the maximum latency should provide a
repeatable pop trace that most closely resembles a successful update. We identify
this as byte offset 0x1c0O in the update signature. This produces an update that
fails at the signature verification stage, just before actually applying the update to
MSRAM.

Using CustomProcessingUnit, we produce a full trace of the faulty microcode
update routine and reverse-engineer it with the help of our decompiler. Figure 7.2
shows a high-level overview of the algorithm, illustrating how the important parts of
the pcode update are parsed and verified by the CPU before applying the update.

7.4 Case Study: Reverse-Engineering the Microcode Update Routine 150

Decryption Algorithm The CPU first checks the validity of the pointer passed
to the wrmsr instruction, erroring out for non-canonical addresses, addresses that
may wrap around the address space, and patch sizes > 256 KB or < 646B. After
these basic checks, the pcode update routine enables a secure memory region at
physical addresses 0xfeb00000-0xfec00000, setting the last bit of the CRBUS
address 0x51b. It then copies the ucode patch from the user-specified address
to 0xfeb01000 in the secure region to check and decrypt it in place. The range
0xfeb00000-0xfeb01000 of the secure memory is used as a scratch memory area to
temporarily hold variables and metadata for the cryptographic algorithms used in
the routine.

After copying the patch, the routine checks basic metadata. It ensures that the
cpuid of the CPU is supported by the update and that the security version number
of the new update is not lower than the number in the currently loaded update. It
then initializes a SHA256 state in the scratch range and computes the SHA256 of
the RSA modulus stored in the pcode update (bytes 0xb0 to 0x1b0), verifying that
it matches a known hard-coded hash (a1b4b7417f0fdcdbOfeaa26eb5b78fb2cb86
153f0ce98803f5cb84ae3a45901d). It checks that the RSA exponent (bytes 0x1b0
to Ox1b4) is 0x11 (17).

The routine then proceeds to compute the decryption key for the pucode update.
It generates a seed combining a 32-byte nonce from the pcode update (bytes 0x90
to 0xb0) with a 16-byte prefix and suffix. This is a hard-coded value from the ucode
routine (0e77b29d9e91765da26648998b6813ab) which we call the CPU secret.
The 64-byte seed is expanded to 256B by recursively computing the SHA256 hash
eight times and saving each 32-byte internal state. The resulting 256B are used to
initialize an RC4 keystream.

The first 512B of the RC4 keystream are discarded, and then the pcode routine
proceeds to decrypt the microcode using RC4. Next, the decrypted pcode is
cryptographically verified. The routine computes the SHA256 of the resulting patch,
including patch metadata (e.g., ucode revision number, release date, length, cpuid
target, and nonce), and verifies this against the RSA signature.

Patch Application Once the update is verified, the patch is applied. Reverse
engineering the decrypted microcode update patch routine shows that a microcode
update is a custom bytecode that the CPU decodes in an interpreter loop to execute
various commands while updating. Such commands include: resetting or writing
microcode RAM, sequence words and match registers; sending commands to internal
components through the CRBUS (e.g., to disable match registers during the update);
writing internal buffers; invoking custom microcode routines; and even control flow
commands to decode different commands based on the CPU state.

Secure Memory To prevent the decrypted patch from being read or tampered
with, the update process must use a secure memory region. We observe that
microcode is decrypted at the temporary physical address 0xfeb01000. Attempting
to read this address during normal execution returns Oxff, as occurs when trying to
read other protected memory regions such as SGX enclave memory. The address
appears to be dynamically enabled for the microcode update process by writing a

7.4 Case Study: Reverse-Engineering the Microcode Update Routine 151

bit to the CRBUS address 0x51b. It has a fast access time (= 20 cycles), fits up
to 256 KB of data before a replacement policy is applied, and content is not shared
between cores. Based on these observations, we conclude that this address is actually
a special view on the L2 cache. This matches an embodiment described in an Intel
patent, in which access to a cache is blocked to all other operations during decoding,
validation, and installation of the update [347].

7.4.2 Security Analysis

The microcode is encrypted and signed to prevent reverse engineering and tampering.
In this section, we investigate the effectiveness of the actual update-routine imple-
mentation towards those guarantees. Bypassing encryption would allow microcode to
be analyzed on other Intel microarchitectures for which the CPU secret has not yet
been leaked, while bypassing anti-tampering would enable the loading of arbitrary
microcode on CPUs without Red Unlock, with all the associated security risks and
customization benefits that entail. Although we specifically analyze our reverse-
engineered GLM implementation, we expect many of these findings to generalize to
other microarchitectures.

RC4 Encryption RC4 is vulnerable to many known attacks [46,209], although
some mitigations are in place in the routine. The key (CPU secret) length of
16B is sufficient to prevent brute-forcing, and the additional use of a unique 16B
nonce (i.e., initialization vector, or IV) to initialize the key expansion prevents
keystream reuse attacks [46]. As the IV is included in the RSA signature, the
attacker cannot modify it, preventing chosen-IV attacks. RC4’s weak key schedule
leads to statistical bias in the generated keystream, making it vulnerable to related-
key recovery attacks when the key and IV are combined together trivially, for
example, via concatenation as they are in the microcode routine [209]. However,
the routine does discard the initial 512B of the keystream to reduce bias. While
attacks have been demonstrated exploiting bias in later bytes, these require high
volumes of ciphertexts (> 1000000 [209]), whereas very few microcode updates are
published. Currently, only 453 Intel production microcode patches are available in a
well-known repository [255], and as these cover multiple microarchitectures, they
also do not all use the same key. Therefore, these mitigations are likely sufficient in
practice, provided that (as is extremely likely) microcode updates continue to be
produced in low volumes.

RSA Signature The use of RSA provides strong anti-tampering protection. The
2048-bit modulus is sufficient to prevent brute-forcing, PKCS#1 v1.5 padding is
used, and the signature check appears experimentally to be constant-time [158].

Several methods are known to bypass RSA signatures when the public key is
not correctly checked [40,260]. However, while the RSA modulus and exponent
for the signature are provided directly in the update metadata, and are therefore
attacker-controlled, they must match the expected values hard-coded in the update
routine. Thus, it is not possible to pass different public key information, replacing
the modulus or exponent to bypass the signature verification.

7.4 Case Study: Reverse-Engineering the Microcode Update Routine 152

The hash that the RSA signature is computed on includes the pcode update
metadata (see Section 7.4). This prevents metadata tampering, such as changing
the security revision number to downgrade the microcode or modifying the cpuid
value to apply a patch for a different CPU model. However, some of these metadata
values are used before being verified. The length of the microcode update is included
in the hash, but it is actively used before. Since the algorithm includes checks
on the minimum and maximum values, we could not leverage such a potential
time-of-check-time-of-use vulnerability to, e.g., cause integer overflows in the routine.

Corrupting Updates An attacker could try to leverage a race condition and
corrupt the decrypted microcode in memory before it is applied. However, the
microcode is decrypted in place inside the reserved secure memory area that we
hypothesize is the L2 cache. The view on the secure memory is only enabled during
microcode updates, and cores trying to access its physical address during normal
execution read only 0xff. We verified that each core has a unique secure memory
area (as the L2 cache is not shared); thus, its content cannot be modified by a
different core during an update. Since the update is triggered by a serializing wrmsr
instruction, the hyperthread parallel to the logical core executing the update is
frozen and cannot modify the secure memory either.

We can obtain partial leaks of decrypted microcode. We achieve this by mapping
the APIC MMIO region at the address 0xfeb01000 that the microcode will be
moved to. This effectively makes the APIC MMIO region shadow the secure memory
region and hijack it from the microcode routine, similar to the Memory Sinkhole
attack [105]. However, we cannot fully leak or corrupt updates due to the limitations
on the writable areas of the APIC MMIO region [182].

An alternative would be to map the APIC to the scratch region used in the
secure memory to corrupt the SHA256 state used to compute hashes. While this is
possible and corrupts the output of the hash algorithms (which would bypass the
signature check), it also corrupts the hash of the RSA public key, which is checked,
and thus the update fails.

Microarchitectural Attacks One could try to leverage microarchitectural attacks
to leak microcode updates during decryption. Most microarchitectural attacks
require execution on either the same core or a hyperthread during the update and
can only leak internal buffers close to the CPU, such as the L1 cache or Line Fill
Buffers [59,236,314,358,368]. The secure memory is accessed in pcode using pops
that access directly uncacheable physical addresses, thus avoiding caches. While
the Line Fill Buffers could be filled with such data, hyperthreading cannot be used
during the update, and internal buffers seem to be flushed afterward, making the
attack ineffective.

EPIC Leak targets structures deeper in the memory hierarchy, i.e., the su-
perqueue [49]. However, as the superqueue holds entries flushed from the L2 cache to
the LLC, the decrypted microcode does not pass through. An inverse attack could
attempt to leverage APIC Leak to insert values from the superqueue. By modifying
the content of the superqueue before the update and once again mapping the APIC
MMIO region over the secure scratch memory, an attacker could make the CPU

7.5 Case Study: x86 Pointer Authentication Codes 153

read leaked values from the superqueue instead and thus corrupt computations with
finer control. However, the pucode update routine also flushes internal buffers before
the update.

7.5 Case Study: x86 Pointer Authentication Codes

7.5.1 Background

Pointer Authentication Codes (PACs) aim to protect sensitive pointers from attacks
that may leverage memory corruption vulnerabilities to hijack the control flow.
PACs were introduced in ARMv8.3 [18] and are used in several ARM-based systems
to provide strong security guarantees [297]. A PAC is a message authentication
code embedded in the high bits of the pointer it protects. The code depends on
the pointer itself, a 64-bit context, and a secret key from a set of five possible keys.
The algorithm used to compute the code is vendor-specific [23], but the standard
recommends the QARMA family of tweakable block ciphers [22]. On most CPUs,
PAC is implemented directly in hardware in a single pop [109].

The ARM instruction set provides different instructions to compute the PAC
and embed it in the pointer (e.g., pacia, pacib), to verify and remove it (autia,
autib), or to simply clear it. The suffix of the instruction selects which key is used
to compute or verify the signature. Upon successful verification, aut instructions
remove the PAC from the high bits of the pointer, while on verification failure, the
bits are not cleared. Thus, once signed, a pointer can be accessed only after being
verified, and causes a memory access fault otherwise.

7.5.2 Implementation

We present the first public implementation of PAC on x86, enabling cheap and strong
hardware-based control-flow-integrity protection on Intel platforms. We implement
instructions to sign and verify 64-bit pointers leveraging CustomProcessingUnit.

As a proof of concept, we define two new microcode routines that sign and verify
a context and a pointer, with a PAC saved in the pointer’s high bits. The size of
the PAC can be customized in our design, provided that it does not conflict with
the used bits in the pointers, and any unused microcoded instructions can be chosen
as the signing and verification instructions. By default, we select a 16-bit PAC
and patch verw and verr, programming the match registers to hook them with our
routines.

Our microcoded signing algorithm uses a single round of SipHash [20]. The
SipHash algorithm has been developed for keyed hashing optimized for small inputs,
which is exactly our use case with 64-bit pointers. We favor it over QARMA as the
latter uses bit shuffles, which are faster in hardware but costly in microcode. We
define a 64-bit secret key to be kept in an internal buffer of the CPU, the staging
buffer, so that it is never architecturally exposed.

Listing 7.4 shows our microcode for the PAC signing algorithm. The authentica-
tion routine is similar, but in addition, it verifies that the existing PAC on the input
pointer matches the one generated from scratch, corrupting the high bits if they
do not match. Our x86 microcode implementation of the PAC signature takes 25

7.5 Case Study: x86 Pointer Authentication Codes

154

.org 0x7c00

declare variables

let [ptr] := ré64dst; let [vO] := tmpl
let [ctx] := r64src; let [v1] := tmp2
let [keyl := tmpO; let [v2] := tmp3
let [key_addr] := 0xba4d0; let [v3] := tmp4d
let [pac]l := tmpb

--- initialize ---

[key]l := LDSTGBUF_DSZ64_ASZ16_SC1([key_addr])

vO0 = 0x736f6d6570736575 ~ key;
[vo] ZEROEXT_MACRO (0x736f6d6570736575)
[vo] XOR_DSZ64 ([v0]l, [keyl)

vl = 0x646f72616e646f6d ~ ctx;

[vi] ZEROEXT_MACRO (0x736f6d6570736575)
[vi] XOR_DSZ64 ([v1]l, [ctx1)

v2 = 0x6c7967656e657261 ~ key;

[v2] ZEROEXT_MACRO (0x736f6d6570736575)
[v2] XO0R_DSZ64 ([v2], [keyl)

v3 = 0x7465646279746573 ~ ctx;

[v3] = ZEROEXT_MACRO (0x736f6d6570736575)

[v3] := XOR_DSZ64([v3], [ctx])

--- update ---

[v3] := XOR_DSZ64([v3], [ptrl) # v3 ~= ptr;

[v0] := ADD_DSZ64([v0]l, [v1]) # vO += vi;

[v2] = ADD_DSZ64 ([v2], [v3]) # v2 += v3;

[vi] := ROL_DSZ64([v1], 0x0d) # vl = RotateLeft<13>(vl);
[v3] := ROL_DSZ64([v3], 0x10) # v3 = RotateLeft<16>(v3);
[vi] := XOR_DSZ64([v1], [v0]) # vi ~= vO;

[v3] := XOR_DSZ64([v3], [v2]) # v3 "= v2;

[vO] := ROL_DSZ64([v0], 0x20) # vO0 = RotateLeft<32>(v0);
[v2] := ADD_DSz64([v2], [v1]) # v2 += vi;

[vO] := ADD_DSZ64([v0], [v3]) # vO += v3;

[vi] := ROL_DSZ64([v1], O0x11) # vl = RotateLeft<17>(vl);
[v3] := ROL_DSZ64([v3], 0x15) # v3 = RotateLeft<21>(v3);
[vi]l := XOR_DSZ64([v1], [v2]) # vi ~= v2;

[v3] := XOR_DSZ64([v3], [v0]l) # v3 ~= vO;

[v2] := ROL_DSZ64([v2], 0x20) # v2 = RotateLeft<32>(v2);
[vO0] := XOR_DSzZ64([v0l, [ptrl) # vO "= ptr;

--- finalize ---

[v2] := XOR_DSZ64([v2], Oxff) # v2 "= OxFF;

[vO] := ADD_DSZ64([v0]l, [v1]) # vO += vi;

[v2] := ADD_DSZ64([v2], [v3]) # v2 += v3;

[vi] := ROL_DSZ64([v1], 0x0d) # vl = RotateLeft<13>(v1l);
[v3] := ROL_DSZ64([v3], 0x10) # v3 = RotateLeft<16>(v3);
[vi] := XOR_DSz64([v1i]l, [v0]l) # vl1 "= vO;

[v3] := XOR_DSZ64([v3], [v2]) # v3 "= v2;

[vO] := ROL_DSZ64([v0], 0x20) # vO = RotateLeft<32>(v0);
[v2] := ADD_DSZ64([v2], [v1]) # v2 += vi;

[vO] := ADD_DSZ64([v0], [v3]) # vO0 += v3;

[vi]l := ROL_DSZ64([v1], Ox11) # v1 = RotateLeft<17>(vl);
[v3] := ROL_DSZ64([v3], 0x15) # v3 = RotateLeft<21>(v3);
[vil := XOR_DSZ64([v1l, [v2]) # vi ~= v2;

[v3] := XOR_DSZ64([v3], [v0]) # v3 ~= vO0;

[v2] := ROL_DSZ64([v2], 0x20) # v2 = RotateLeft<32>(v2);
pac = ((v0O ~ v1) = (v2 = v3)) << 48;

[pac] := XOR_DSz64([v0]l, [v1i])

[pac] := XOR_DSZ64 ([pacl, [v21)

[pac]l := XOR_DSZ64 ([pacl, [v31)

[pac] := SHL_DSZ64 ([pac]l, 0x30)

sign ptr

[ptr] := XOR_DSZ64([pacl, [ptrl)

Listing 7.4. x86 PAC signature microcode routine leveraging a single round of SipHash.

7.5 Case Study: x86 Pointer Authentication Codes 155

clock cycles to execute, while the authentication operation takes 26. We verify that
the implementation works as expected by signing pointers and verifying that they
authenticate when not tampered with and cause an invalid memory access otherwise.

7.5.3 Security Analysis

For the security analysis of our x86 PAC implementation, we focus on the resistance
of our implementation to speculative execution attacks such as PACMAN [302].
We refer the reader to the original SipHash paper for a security evaluation of the
SipHash algorithm [20].

PACMAN This attack bypasses pointer authentication by speculatively authenti-
cating a corrupted pointer, using side channels to identify a correct PAC. Because
the authentication routine is speculatively rather than architecturally executed, the
attack can brute-force the PAC without causing the program to crash.

We re-implement the attack on our CPU, effectively developing the first x86
PACMAN attack. As in the original paper, we leverage a PACMAN gadget that
authenticates and then accesses a pointer behind a branch whose direction we can
determine. We train the branch prediction by executing the branch with a valid
pointer with a correct PAC for 10 iterations. We then use an artificial memory-
corruption vulnerability to override the pointer with an attacker-controlled value
and PAC and change the branch condition so the authentication instructions are no
longer architecturally executed. While the gadget is not executed architecturally, it
is executed speculatively, and the pointer, if valid, is dereferenced speculatively. For
simplicity, we make the pointer point to shared memory between the attacker and
the victim and use Flush+Reload [394] to infer whether the pointer location was
accessed, i.e., the PAC was correct.

Implementing the attack on our x86 PAC implementation fails to leak valid PAC
values. This is due to the smaller Reorder Buffer (ROB, 78 entries) and Physical
Register File (PRF, 56 entries) in GLM CPUs [15]. Our x86 PAC implementa-
tion consists of 54 pops, filling up the entire speculative window and preventing
subsequent speculative access. However, on a CPU with a wider ROB and PRF,
the attack would succeed as it is the PAC design, not the implementation, that is
vulnerable to PACMAN. To test this hypothesis, we write a weaker version of the
PAC implementation in 27 pops, which only partially implements SipHash. With
this shorter PAC implementation, the attack successfully brute-forces a valid PAC
for a given pointer in less than a second.

Mitigation We leverage CustomProcessingUnit to investigate how PACMAN could
be mitigated in microcode. As a first attempt, we could add a speculation barrier
to the PAC implementation. However, such a solution would incur considerable
overhead, slowing the execution of the PAC instruction (by around 10 cycles) and
other instructions in the pipeline. Moreover, an attacker could find a gadget where
the pointer authentication occurs on a non-speculative path while the access occurs
on a speculative one, re-enabling the attack.

Thus, we investigate a solution that does not involve fences. The core concept is
to make the pointer-authentication operations fault when an invalid PAC is detected

7.6 Case Study: usoftware Breakpoints 156

while also removing the PAC from the pointer. This means that the pointer is always
valid in the speculative path, removing the side channel on PAC validity. Faulting
ensures that memory corruption attacks using corrupted pointers architecturally still
fail. Our mitigated implementation that triggers an exception when detecting an
invalid PAC has no overhead with respect to the original, and is the first public PAC
implementation not vulnerable to the PACMAN attack. However, one drawback
is that this design re-enables Spectre attacks [210] using corrupted pointers in the
speculative path. A further remaining attack surface is the use of a port contention
side-channel [6] to detect the micro-operations that cause a fault in the speculative
path. This attack surface could be closed by disabling hyperthreading or preventing
an attacker from running parallel to the victim.

7.6 Case Study: usoftware Breakpoints

7.6.1 Background

Software breakpoints are widely used both for debugging [140] and instrumenta-
tion [129,244,272,406]. The int3 (Oxcc) instruction triggers an interrupt calling the
debug exception handler with a breakpoint exception [182]. The interrupt routine
handling the breakpoint exception in the kernel then generates a SIGTRAP signal
to the user space process. Thus, for every breakpoint hit during execution, the
application issuing a breakpoint incurs a context switch to the interrupt routine in
kernel space and another context switch back to user space.

Applications can leverage interfaces provided by the operating system to debug
child processes through breakpoints (e.g., ptrace for Linux). These make it easy
to trigger the execution of specific instructions once a breakpoint is hit. While
such interfaces are convenient, they incur significant overhead (up to 10000 cycles
in our system) due to the multiple context switches between processes. It is,
therefore, crucial to work around this performance limitation for high-performance
instrumentation.

One such high-performance application of breakpoint-based instrumentation is
binary-level fuzzing. Fuzzing is one of the most prominent techniques to find memory-
corruption vulnerabilities [132, 241, 289, 400]. It uses coverage-guided feedback
to discover random inputs that exercise different paths of a program to expose
bugs. While source-level fuzzing involves custom compilation passes to insert
coverage collection instrumentation, binary-level fuzzing usually relies on binary
instrumentation [372] or breakpoint-based instrumentation [129,244,272,406].

Breakpoint-based instrumentation relies on aggressive optimizations to mitigate
the performance hit of software breakpoints, e.g., removing the breakpoint completely
once it has first been hit and an input reaching that coverage point has been
collected [129]. Such an optimization eventually converges to zero performance
overhead but sacrifices useful path information on branches that have already been
hit [137].

7.7 Case Study: Constant-time Hardware Division 157

.org 0x7c00
.patch 0xc40 # icebp entry point
.entry O

let [cov_map]l := tmpil
let [rip] := tmpO

load address of coverage map from staging buffer
[cov_mapl:= LDSTGBUF_DSZ64_ASZ16_SC1(0xba00)

get instruction pointer low bits
[rip]l:= ZEROEXT_DSZ64 (IMM_MACRO_ALIAS_RIP) !mO
[ripl:= AND_DSZ64 (0xffff, [ripl)

set coverage for basic block
STADPPHYS_DSZ8_ASZ64_SC1([cov_map], [ripl, 0x01)

Listing 7.5. usoftware breakpoint to collect code coverage.

7.6.2 Implementation

We leverage CustomProcessingUnit to implement a new type of software breakpoints
that we name psoftware breakpoints. To implement these, we change the semantics
of the icebp/int1 (0xf1) instruction, which should not be used by normal software.
Placing the breakpoint logic directly in microcode avoids the cost of interrupts or
context switches and is thus extremely fast.

As a proof of concept, we implement usoftware breakpoints for coverage collection
in binary-level fuzzing. We save the address of the coverage map in an internal buffer
of the CPU for ease of access inside microcode and simply update the coverage based
on the current instruction pointer during breakpoint execution. Listing 7.5 shows
an example implementation of psoftware breakpoints for coverage-guided fuzzing.

As a microbenchmark, we measure the overhead of executing a single usoftware
breakpoint to collect coverage information, averaging 1 million executions. For each
usoftware breakpoint, the CPU has a latency of 10 cycles, which is mostly due to
the switch to the microcode RAM by the Microcode Sequencer. This is around
1000x faster than ptrace-based instrumentation. To compare with the fastest non-
microcoded implementation, we also implement the same logic for coverage collection
directly in the kernel debug exception handler. While such an implementation is
faster than user space coverage collection, we still measure a latency of 388 cycles,
making psoftware breakpoints 38.8x faster.

7.7 Case Study: Constant-time Hardware Division

7.7.1 Background

Side-channel attacks allow adversaries to leak secret values by observing secret-
dependent side effects of computation, such as differences in execution time or
microarchitectural state [31,236]. Constant-time programming aims to produce
algorithms resistant to timing side-channel attacks, implemented so that the same

7.7 Case Study: Constant-time Hardware Division 158

.org 0x7c00

.patch 0x6c8 # div entry point

.entry O

let [dividend] := rax; let [templ] := tmp3
let [divisor] := rcx; let [temp2] := tmp4
let [sizel := 0x3f; let [temp3] := tmpb
let [quotient] := tmpO; let [temp4] i= tmp7
let [temp] 1= tmpl; let [temp5] 1= tmp8
let [i] := tmp2; let [comp] := tmp6
[temp] := ZEROEXT_DSZ64 (0x0); [i] := ZEROEXT_DSZ64 ([sizel)
[quotient] := ZEROEXT_DSZ64(0x0)

<loop>

if (i < 0) goto end;
UJMPCC_DIRECT_NOTTAKEN_CONDB([i], <end>)

temp = (temp << 1uLL) | ((dividend >> i) & 1);

[templ]:= SHL_DSZ64([temp]l, O0x1)

[temp2]:= SHR_DSZ64 ([dividend], [il)

[temp2]:= AND_DSZ64([temp2], O0x1)

[temp] := OR_DSZ64([templ], [temp2])

comp = (temp >= divisor);

[comp]l := SUB_DSZ64([divisor], [temp])

temp -= comp? divisor : O;

[temp3]:= SELECTCC_DSZ64_CONDB([comp], [divisorl])
[temp] := SUB_DSZ64([temp3], [templ)

quotient |= comp ? 1ulL << i : 0;

[temp4]:= SHL_DSZ64(0x1, [il)
[temp5]:= SELECTCC_DSZ64_CONDB([comp]l, [temp4])

[quotient] := OR_DSZ64([quotient], [temp51)

i--; goto loop

[i] := SUB_DSZ64(0x1, [i]) SEQW GOTO <loop>

<end>

return quotient, ignore the remainder for simplicity
rax := ZEROEXT_DSZ64 ([quotient])

rdx := ZEROEXT_DSZ64 (0x0)

Listing 7.6. Constant-time div microcode routine.

instruction and memory access patterns occur regardless of the secret input [31,185].
Several solutions have been proposed to automatically rewrite software to be constant-
time [48, 65,301, 332,389]. They typically involve transforming programs during
compilation to consistently execute the same sequence of operations irrespective of
their input.

While this is effective for instruction traces and memory access patterns, there
are some instructions whose latency depends on the input values [189]. Examples
of such instructions are division or remainder operations and many floating-point
operations. Executing these instructions on secret data may leak information about
their operands or the result. Automated solutions to mitigate such side channels
rely on software wrappers implementing these operations in constant-time. However,
substituting a single instruction with a full software wrapper incurs substantial
overhead. It increases the code size and requires complete recompilation of the

7.8 Conclusion 159

program or precise binary patching.

7.7.2 Implementation

As a case study, we patch one of these instructions, unsigned integer division (div),
to provide constant-time guarantees at the microcode level instead. Intel CPUs
implement division directly in hardware [62], but we verified that the div instruction
itself is microcoded and thus can b