IR AN 1 EINjTy
EXECUMION,
[IPIEES
ATTAC KEg IE_S'I?HdEeZIé MBIES

by pietroborrello

g» _The
@ A long time ago, in a galaxy far, far away... ﬁem“i‘%"

SPQR

We have seen how modern CPU leave traces of what they did during transient
execution due to microarchitectural optimizations:

Meltdown: Exceptions during execution are enforced lazily
= There is a small window where the result of faulty instructions is
accessible (e.g. kernel memory content!)

Spectre: Predicted instructions are
executed transiently

= There is a small window of instructions
that shouldn’t be executed, due to
misprediction

@ A long time ago, in a galaxy far, far away..

SPQR

TV R LR AT
wmwmwm%m

T A0 O
}uwwwwwﬂ“

I
i i

(i

(LRI LAY
T

NI
A Gy i

SPQR

J2cuanbag

(3) Memory Pipeline

Instruction L1i Cache L2 Cache
Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way

Instruction Queue Cache Tags
(2x25 entries)

[N

Branch
5-way Decoder Load Buffer

()
o
=)
72l
©
x
Ry
B
=
o
bl
&

[Instruction |
pOP L1d Cache Line Fill
‘ 32 kiB Buffer
8-way (10 entries)

Prediction ‘ Physical
(72 entries) Register File
urn

. Store & Forward Buffer Integer
Buffer stores |

(56 entries) Registers
(180 entries)

‘ Branch Order Buffer
branches | ; Vector
(48 entries) -
Registers

UOP Cache (168 entries)

i .order Buiffer
1.5K LOPs HOPs ‘ Re-order Buffer

4 uOPs 8-Way (224 entries)
Retirement Unit

Allocation Queue
(2x64 entries)

6 YOPs
] Allocation & Renamin

sasng ejeq UOWWO)

@ A long time ago, in a galaxy far, far away...

) [INTALU |

INT DIV

| [IVECALU !
! IVEC MUL INTALU
) [LFP FMA INT MUL

\ | VECSTR

FP DIV

; [BitScan

HOP Scheduler
Unified Reservation Station (97 entries)

Th
ﬁﬂoﬁlan
Xploit

g~ _The
A long time ago, in a galaxy far, far away... ’Tm%nﬁn

SPQR

add gword ptr [rax], rbx

() Front-end (3 Memory Pipeline
Instruction L1i Cache L2 Cache
Predecode & Fetch 32 kiB i 256 kiB
) (16 bytes) 8-way 4-way
6 MOPs Instruction 1
pOP L1d Cache Line Fill]

Instruction Queue Cache Tags Blior ;

(2x25 entries) (10 entries)]

Macro

Fusion 1 INT ALU
! [LOAD VEC
Ps SHUFFLE

- INTALU IVEC ALU
Prediction Load Buffer Physical INT DIV T

Unit (72 entries) Register File i [IVEC ALU

‘ 1 [IVEC MUL! INT ALU
Ret;r:fSta(k S | Store & Forward Buffer Integer 2 Atk INT MUL
L= | (56 entries) Registers
Branch (180 entries)
Target Buffer Branch Order Buffer
branches | . Vector
(48 entries))
‘ Registers

Execution Units

coder

G

J2cuanbag

VEC STR IVEC MUL
FP DIV. FP FMA

Bit Scan

sdor p-¢ | [xajdwo)

= IVEC ALU
OP Cache y
b Re-order Buffer (168 entries)

sasng ejeq UOWWO)

1.5K HOPs © OPs

\ i
4HOPs | g \vay ‘ (224 entries) _ HOP Scheduler
Retirement Unit Unified Reservation Station (97 entries)

Multiplexer Register Alias Table

] Primary || Shadow
Stack Engine Allocation Queue RAT RAT AHIOLE

(2x64 entries)
Micro Register
] Allocation & Renaming

g~ _The
A long time ago, in a galaxy far, far away... ("}%ﬁ%ﬂggﬁ

SPQR
add qword ptr [rax], rbx = Rec,, Rec,, LoAp,, AbD, STORE,

() Front-end
Instruction L1i Cache L2 Cache

Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way

Instruction

6 MOPs 3
pOP L1d Cache Line Fill]

Execution Units

Instruction Queue Cache Tags Bl

(2x25 entries) (10 entries)
Macro
Fusion

’

) LOAD

1 INT ALU
i LOAD VEC

5 MOPs I— SHUFFLE
- ;N IVEC ALU
5-way Decoder Erdiction Load Buffer Physical INT DIV LEA

Unit (72 entries) Register File i [IVEC ALU
! [IVEC MUL INT ALU

Ret;r:fSta(k S | Store & Forward Buffer Integer ' FPA?ZIA INTEMUI
urter ' . Registers] IVECALU | |
| (56 entries) 1 | VEC STR IVEC MUL

Branch ‘ (180 entries) EP DIV P EMA
Target Buffer ! Branch Order Buffer 3
branches | . Vector
(48 entries) ;
‘ Registers

J2cuanbag

| Bit Scan |
l‘;osicaoc::e i LOPs (168 entries)
.5K pOPs

8-way

sasng ejeq UOWWO)

Re-order Buffer

\ i
‘ (224 entries) _ pOP Scheduler
Retirement Unit Unified Reservation Station (97 entries)

Register Alias Table

Primary || Shadow
Allocation Queue RAT RAT 4 uoPs

(2x64 entries)
Micro

Register
Allocation & Renaming

g~ _The
A long time ago, in a galaxy far, far away... ’Tm%nﬁn

SPQR

add qword ptr [rax], rbx = Rec,, Rec,, LoAp,, AbD, STORE,

B

(D Front-end (3 Memory Pipeline
Instruction L1i Cache L2 Cache
Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way
6 MOPs Instruction] Execution Units

pOP L1d Cache Line Fill]

Instruction Queue Cache Tags Blior ;

(2x25 entries) (10 entries)]

Macro

Fusion 1 INT ALU
i LOAD VEC
Ps SHUFFLE

= INT ALU IVEC ALU
coder Brediction Load Buffer Physical INT DIV LEA

Unit (72 entries) Register File i [IVEC ALU

1 [IVEC MUL!
Return Stack ‘ s TR
Buff stores ‘Store & Forward Buffer]
— i (56 entries) Registers

FP FMA INT MUL
Branch ‘ (180 entries)
Target Buffer Branch Order Buffer
branches | . Vector
(48 entries) ;
‘ Registers

o

J2cuanbag

VEC STR IVEC MUL
ERIDIV FP FMA

Bit Scan

sdor p-¢ | [xajdwo)

= IVEC ALU
OP Cache y
b Re-order Buffer (168 entries)

sasng ejeq UOWWO)

1.5K HOPs © OPs

\ i
4HOPs | g \vay ‘ (224 entries) _ HOP Scheduler
Retirement Unit Unified Reservation Station (97 entries)

Multiplexer Register Alias Table

} Primary || Shadow
Allocation Queue RAT RAT 4 uoPs

(2x64 entries)
i Register
] Allocation & Renaming

g~ _The
A long time ago, in a galaxy far, far away... ’Tm%nﬁn

SPQR

add gword ptr [rax], rbx = REG,, REG

() Front-end
Instruction
Predecode & Fetch
(16 bytes)

6 MOPs

Instruction Queue
(2x25 entries)

Macro
Fusion

Ps
coder

G

J2cuanbag

sdor p-¢ | [xajdwo)

4 10Ps

(3) Memory Pipeline

L1i Cache L2 Cache
32 kiB i

256 kiB
4-way

Instruction

Cache Tags

Prediction
Unit

Return Stack
Buffer
Branch

UOP Cache
1.5K pOPs
8-way

Multiplexer

Stack Engine Allocation Queue
(2x64 entries)

Micro

L1d Cache Line Fill

(10 entries)

Buffer

LoAD,, ADD, STORE,

Execution Units

,

1 INT ALU
1 [_LOAD VEC

LOAD

SHUFFLE

Load Buffer
(72 entries)

‘Store & Forward Buffer
(56 entries)

stores

Physical
Register File

| [VECALU
 [IVEC MUL INT ALU

INTALU IVEC ALU
INT DIV TEA

Integer
Registers
(180 entries)

FP FMA INT MUL
AES IVEC ALU
VEC STR IVEC MUL
FP DIV. FP FMA

Re-order Buffer

‘ Branch Order Buffer
branches | .
‘ (48 entries)

uOPs

Vector
Registers

(168 entries)

| (224 entries)
‘ Retirement Unit

Register Alias Table
Primary || Shadow
RAT RAT

Register

Allocation & Renaming

sasng ejeq UOWWO)

Bit Scan

HOP Scheduler
Unified Reservation Station (97 entries)

g~ _The
A long time ago, in a galaxy far, far away... ("}%ﬁ%ﬂggﬁ

SPQR

add qword ptr [rax], rbx = Rec,, Rec,, LoAp,, AbD, STORE,

() Front-end
Instruction L1i Cache L2 Cache

Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way

6 MOPs Instruction
poP L1d Cache Line Fill

Instruction Queue Cache Tags
< ¢ Buffer
(2x25 entries)
Macro
Fusion

(10 entries)

INT ALU
VEC
s 1 SHUFFLE

- IVECALU
coder Brediction Load Buffer Physical] LEA

Unit (72 entries) Register File

Ret;r:fSta(k S | Store & Forward Buffer Integer
L= | (56 entries) Registers
Branch (180 entries)
Target Buffer ! Branch Order Buffer
branches | . Vector
(48 entries) h]
h Registers - - 5
HOP Cache | (168 entries)
15K }JOPS LOPs ‘ Re;;;dertB.uffer
410Ps Sy ‘ (224 entries) HOP Scheduler

G

INT ALU
INT MUL
IVECALU
IVEC MUL
FP FMA

Bit Scan

J2cuanbag

sdor p-¢ | [xajdwo)

sasng ejeq UOWWO)

Retirement Unit Unified Reservation Station (97 entries)

Multiplexer Register Alias Table

Primary || Shadow
Stack Engine Allocation Queue RAT RAT AHIOLE

(2x64 entries)
Micro

Register
Allocation & Renaming

g~ _The
A long time ago, in a galaxy far, far away... ("}%ﬁ%ﬂggﬁ

SPQR

add qword ptr [rax], rbx = Rec,, Rec,, LoAp,, AbD, STORE,

() Front-end
Instruction L1i Cache L2 Cache

Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way

6 MOPs Instruction
poP L1d Cache Line Fill

Instruction Queue Cache Tags
< ¢ Buffer
(2x25 entries)
Macro
Fusion

(10 entries)

INT ALU
VEC
Ps ‘ SHUFFLE
i - i IVECALU

coder Erediction Physical LEA

Unit Register File

Return;stack Store & Forward Buffer Integer
Buffer 0 stores | (5) Registers
Branch i (180 entries)

Target Buffer . Branch Order Buffer

branches | . Vector
(48 entries))]
h Registers - g 3
HOP Cache | (168 entries)
1.5K HOPs HoPs | Re;;;dertB.uffer
4 OPs 8-way ‘ (224 entries) POP Scheduler

G

INT ALU
INT MUL
IVECALU
IVEC MUL
FP FMA

Bit Scan

J2cuanbag

sdor p-¢ | [xajdwo)

sasng ejeq UOWWO)

Retirement Unit Unified Reservation Station (97 entries)

Multiplexer Register Alias Table

Primary || Shadow
Stack Engine Allocation Queue RAT RAT AHIOLE

(2x64 entries)
Micro

Register
Allocation & Renaming

g~ _The
A long time ago, in a galaxy far, far away... ("}%ﬁ%ﬂggﬁ

SPQR

add qword ptr [rax], rbx = Rec,, Rec,, LoAp,, AbD, STORE,

() Front-end
Instruction L1i Cache L2 Cache

Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way

6 MOPs Instruction
poP L1d Cache Line Fill

Instruction Queue Cache Tags
< ¢ Buffer
(2x25 entries)
Macro
Fusion

(10 entries)

INT ALU
VEC
s 1 SHUFFLE

- IVECALU
coder Brediction Load Buffer Physical] LEA

Unit (72 entries) Register File
Integer
Buffer - Registers
Branch i (180 entries)
|
‘ Vector

G

INT ALU
INT MUL
IVECALU
IVEC MUL
FP FMA

Bit Scan

J2cuanbag

Registers
(168 entries)

sdor p-¢ | [xajdwo)

UOP Cache
1.5K pOPs
8-way

sasng ejeq UOWWO)

Re-order Buffer

10Rs HOP Scheduler

ement Unit Unified Reservation Station (97 entries)

Multiplexer Register Alias Table
| Primary || Shadow
Stack Engine Allocation Queue RAT RAT

(2x64 entries)

Micro

4 uOPs

Register
Allocation & Renaming

g~ _The
A long time ago, in a galaxy far, far away... ’Tm%nﬁn

SPQR

add qword ptr [rax], rbx = Rec,, Rec,, LoAp,, AbD, STORE,

(D Front-end (3 Memory Pipeline
Instruction L1i Cache L2 Cache
Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way
6 MOPs Instruction 1
pOP L1d Cache Line Fill]

Instruction Queue Cache Tags Blior ;

(2x25 entries) (10 entries)]

Macro

Fusion 1 INT ALU
! [LOAD VEC
Ps SHUFFLE

- INTALU IVEC ALU
Prediction Load Buffer Physical INT DIV T

Unit (72 entries) Register File i [IVEC ALU

‘ ! [IVEC MUL INTALD
Ret;r:fSta(k S | Store & Forward Buffer Integer 2 Atk INT MUL
L= | (56 entries) Registers
Branch ‘ (180 entries)
Target Buffer Branch Order Buffer
branche‘s | Vector

Execution Units

coder

G

J2cuanbag

VEC STR IVEC MUL
FP DIV. FP FMA

Bit Scan

AES IVEC ALU
(48 entries)

sdor p-¢ | [xajdwo)

Registers
(168 entries)

UOP Cache

1.5K pOPs -
4 OPs 8-way HOP Scheduler

Unified Reservation Station (97 entries)

Re-order Buffer

sasng ejeq UOWWO)

Multiplexer Register Alias Table

| Primary || Shadow
Stack Engine Allocation Queue RAT RAT
(2x64 entries)

Micro Register
] Allocation & Renaming

g~ _The
A long time ago, in a galaxy far, far away... ("}%ﬁ%ﬂggﬁ

SPQR

add gword ptr [], rbx = Res,, Rec , AbD, STORE,

() Front-end
Instruction L1i Cache L2 Cache

Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way

6 MOPs Instruction
poP L1d Cache Line Fill

Instruction Queue Cache Tags
< ¢ Buffer
(2x25 entries)
Macro
Fusion

(10 entries)

INT ALU
VEC
s 1 SHUFFLE
- IVEC ALU

coder Prediction Physical } LEA
Unit Register File

carer
Buffer 0 Registers
Branch i (180 entries)
Target Buffer .
‘ Vector

G

INT ALU
INT MUL
IVECALU
IVEC MUL
FP FMA

Bit Scan

J2cuanbag

Registers
(168 entries)

sdor p-¢ | [xajdwo)

UOP Cache
1.5K pOPs
8-way

sasng ejeq UOWWO)

Re-order Buffer

10Rs HOP Scheduler

ement Unit Unified Reservation Station (97 entries)

Multiplexer Register Alias Table
| Primary || Shadow
Stack Engine Allocation Queue RAT RAT

(2x64 entries)

Micro

4 uOPs

Register
Allocation & Renaming

g~ _The
A long time ago, in a galaxy far, far away... ’Tm%nﬁn

SPQR

add gword ptr [], rbx = Res,, Rec,, Loap,, ApD, STORE,

(D Front-end (3 Memory Pipeline
Instruction L1i Cache L2 Cache
Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way
6 MOPs Instruction 1
pOP L1d Cache Line Fill]

Instruction Queue Cache Tags Blior ;

(2x25 entries) (10 entries)]

Macro

Fusion 1 INT ALU
! [LOAD VEC
Ps SHUFFLE

- INTALU IVEC ALU
Prediction Load Buffer Physical INT DIV T

Unit (72 entries) Register File i [IVEC ALU

‘ 1 [IVEC MUL! INT ALU
Ret;r:fSta(k S | Store & Forward Buffer Integer 2 Atk INT MUL
L= | (56 entries) Registers
Branch (180 entries)
Target Buffer Branch Order Buffer
branches | . Vector
(48 entries))
‘ Registers

Execution Units

coder

G

J2cuanbag

Bit Scan

sdor p-¢ | [xajdwo)

AES IVEC ALU
VEC STR IVEC MUL
UOP Cache RE-i (168 entries)
1.5K pOPs

FP DIV FP FMA
4 HOPs 8-way HOP Scheduler
Unified Reservation Station (97 entries)

sasng ejeq UOWWO)

Multiplexer Register Alias Table

| Primary || Shadow
Stack Engine Allocation Queue RAT RAT
(2x64 entries)

Micro Register
] Allocation & Renaming

g~ _The
A long time ago, in a galaxy far, far away... ’Tm%nﬁn

SPQR

add gword ptr [], rbx = Res,, Rec,, Loap,, ApD, STORE,

(D Front-end (3 Memory Pipeline
Instruction L1i Cache L2 Cache
Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way
6 MOPs Instruction 1
pOP L1d Cache Line Fill]

Instruction Queue Cache Tags Blior ;

(2x25 entries) (10 entries)]

Macro

Fusion 1 INT ALU
! [LOAD VEC
Ps SHUFFLE

- INTALU IVEC ALU
Prediction Load Buffer Physical INT DIV T

Unit (72 entries) Register File i [IVEC ALU

‘ ! [IVEC MUL INTALD
Ret;r:fSta(k S | Store & Forward Buffer Integer 2 Atk INT MUL
L= | (56 entries) Registers
Branch ‘ (180 entries)
Target Buffer Branch Order Buffer
branche‘s | Vector

Execution Units

coder

G

J2cuanbag

VEC STR IVEC MUL
FP DIV. FP FMA

Bit Scan

AES IVEC ALU
(48 entries)

sdor p-¢ | [xajdwo)

Registers
pOP Cache | (168 entries)
1.5K pOPs o
4 HOPs 8-way HOP Scheduler

Unified Reservation Station (97 entries)

sasng ejeq UOWWO)

- PV
Multiplexer Regisfer Alias Table

| Primary || Shadow
Stack Engine Allocation Queue RAT RAT
(2x64 entries)

Micro Register
] Allocation & Renaming

g _The
@ A long time ago, in a galaxy far, far away... (')%m“i‘%"

SPQR

Meltdown idea:

W nh -

Reading Kernel Memory rises a General Protection Fault
But we can access the value during transient execution!

char array[256 * 4096] 1. handle SIGSEGV

flush all array cache lines 2. for(i = 0; i < 256; i++)

read kernel byte into X measureTime(array[i*4096])
tmp = array[X * 4096] 3. The index with fastest access

corresponds to X

@ Episode |l

SPQR

g Th
ﬁﬂoﬁian
Xploit

e Meltdown attacks leak secrets loading them into the L1 and L2 caches
e The secrets values are brought into the caches and then accessed by

faulty instructions

L1i Cache
32 kiB
8-way

Instruction

pOP
Cache Tags

L2 Cache
256 kiB
4-way

L1d Cache Line Fill
32 kiB Buffer
(10 entries)

gv _The
@ Episode |l ’;‘;m%nﬁn

SPQR

e Meltdown attacks leak secrets loading them into the L1 and L2 caches
e The secrets values are brought into the caches and then accessed by
faulty instructions

o MITIGATION:

isolate or mask valuable addresses
o e.g. unmap kernel addresses from userspace

User Mode

gv _The
@ Episode |l ’ﬁrﬁ%nﬁn

SPQR

e Meltdown attacks leak secrets
e The secrets values are and then accessed by
faulty instructions

o MITIGATION:

isolate or mask valuable addresses
o e.g. unmap kernel addresses from userspace

User Mode

gv _The
@ Episode |l (ﬁ‘;{ﬁmnﬁn

SPQR

e Meltdown attacks leak secrets
e The secrets values are and then accessed by
faulty instructions

o MITIGATION:

isolate or mask valuable addresses
o e.g. unmap kernel addresses from userspace

e Maybe... we should understand how caches really work

User Mode

g _The
Caches 101 (ﬁlﬂ?}n}%n

SPQR

hwnh -~

This is how we always looked at caches
Virtual address = Physical address
Get Tac and CacHe SET

Take Pace OFFSET

Virtual Page Page Offset
Page Table

Search for Tac in the CacHeE SET: m &
a. HIT: getdata ,,hysica,Address
b. : load data from cache
hierarchy o E i s s e
HEEEEEEE

Cache Line

g _The
Caches 101 (ﬁlﬂ?}n}%n

SPQR

e This is how we always looked at caches

1. Virtual address = Physical address
2. Get Tac and CacHE SEeT
3. Take Pace OFFSET
4. Search for Tac in the CacHE SET: m
TLB
a. HlT. get data Physical Address
b. : load data from cache
. i H Set Index
hierarchy A SN RN
B REEIREREER
n Cache Line
L
Wait, wait, what does it mean to load data it

from cache hierarchy?!

g The
} L1 Cache Misses 101 "ﬁ'ﬁ%ﬂ;gn

Let’s focus just on L1 cache!

L1 cache will send memory request to the L2 cache
to load the requested address

e Reserve cache line to host future data

Then what?

a. Wait for completion & Block other loads/stores
b. Try to optimize it

g _The
@ L1 Cache Misses 101 ’ﬁmn;%n

SPQR

e Let's focus just on L1 cache!

e L1 cache will send memory request to the L2 cache
to load the requested address

e Reserve cache line to host future data
Then what?
a. Wait for completion & Block other loads/stores
b. Try to optimize it

OPTIMIZED

{ Super Fast L1 Cache Misses ﬁﬂﬂgﬂlgﬂ

(%]
v
G

Send memory request to the L2 cache

Reserve a Line FiLL Burrer entry to host future data
Now the cache is free!

e Continue serving other requests

e Eventually the data will be in the Line F1LL Burrer entry
Now move data into the right cache line and complete the memory request

{ Super Fast L1 Cache Misses ﬁﬂﬂgﬂlgﬂ

(%]
v
G

Send memory request to the L2 cache

Reserve a Line FiLL Burrer entry to host future data
Now the cache is free!

e Continue serving other requests

e Eventually the data will be in the Line F1LL Burrer entry
Now move data into the right cache line and complete the memory request

Wait, WTF is Line FILL Burrer ?!

No one ever mentioned them!

J2cuanbag

Instruction

L1i Cache L2 Cache

Predecode & Fetch 32 kiB i 256 kiB

Instruction Queue
(2x25 entries)

()
o
3
el
®
X
=
H
=
o
o
w

(16 bytes) 8-way 4-way

Instruction
HoP L1d Cache Line Fill
Cache Tag> 32 kiB Buffer
(10 entries)

Branch
Prediction

. F’ & Forward Buffer Integer
stores
L

(56 entries) Registers
(180 entries)
Branch Order Buffer
branches . Vector
(48 entries))
Registers

UOP Cache (168 entries)

1.5K HOPs {IOPs Re-order Buffer

4 uOPs (224 entries)
Retirement Unit

Register Alias Table

No one ever mentioned them!

sasng ele@ UOWIWIO)

i [IVECALU

HOP Scheduler
Unified Reservation Station (97 entries)

Xploit

g The
€Y Let's meet the Line Fill Buffer RShan

SPQR

e It's aninternal CPU buffer, between L1d and L2 caches
Temporary place to store data while its loading from memory
Each L1 cache miss will have a corresponding LFB entry
where the L2 cache will load the data

L2 Cache
256 kiB
4-way

L1d Cache l—Line Fill
32 kiB Buffer

8-way (10 entries)

The
@ Let’s meet the Line Fill Buffer ’ﬁf{lﬂﬂ"ﬁﬁ

SPQR

e It's aninternal CPU buffer, between L1d and L2 caches
Temporary place to store data while its loading from memory
Each L1 cache miss will have a corresponding LFB entry
where the L2 cache will load the data

e Just an optimization to increase memory throughput

il alnpt‘m‘uch | bu’t |

b

SPQR

add gword ptr [rax], rbx = REG,, REG

J2cuanbag

€ Line Fill Buffers in action

B’ A’

(3) Memory Pipeline

Instruction L1i Cache L2 Cache

Predecode & Fetch 32 kiB i 256 kiB

Instruction Queue Cache Tags
(2x25 entries)

5-way Decoder

()
o
=)
72l
©
x
Ry
B
=
o
bl
&

(16 bytes) 8-way 4-way

Instruction
pOP L1d Cache Line Fill
§ 32 kiB Buffer
8-way 10 entries)

Branch
Prediction Physical
Register File

eturn Sta ‘ L il
” : [INT MUL |

‘ Store & Forward Buffer Integer
c X Registers
Branch (180 entries)

! ()
uff Branch Order Buffer
‘ : Vector
(48 entries) p
‘ Registers

UOP Cache (168 entries)
1.5K pOPs

8-way JOP Scheduler

Unified Reservation Station (97 entries)

Buffer

Bit Scan

sasng ejeq UOWWO)

4 uOPs

Allocation Queue
(2x64 entries)

Xploit

g The
Line Fill Buffers in action Rdhan

SPQR

add qword ptr [rax], rbx = Rec,, Rec,, LoAp,, AbD, STORE,

(D Front-end (3 Memory Pipeline
Instruction L1i Cache L2 Cache
Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way
6 MOPs Instruction 1
pOP L1d Cache Line Fill]

Instruction Queue Cache Tags
< : Buffer
(2x25 entries) o

Macro
Fusion ' [AGU INT ALU
LOAD VEC
Ps S SHUFFLE
- N IVEC ALU
Prediction Load Buffer Physical INT DI TER

Unit (72 entries) Register File i [IVEC ALU

! [IVEC MUL INT ALU
Integer FP FMA INT MUL
Buffer 0 Registers
Branch i (180 entries)
Target Buffer
‘ Vector

Execution Units

(10 entries) ' M OAD

G

coder

J2cuanbag

FP DIV. FP FMA

Bit Scan

sdor p-¢ | [xajdwo)

AES IVEC ALU
VEC STR IVEC MUL

Registers
(168 entries)

UOP Cache

1.5K pOPs -
4 OPs 8-way HOP Scheduler

ement Unit Unified Reservation Station (97 entries)

Re-order Buffer

sasng ejeq UOWWO)

Multiplexer Register Alias Table
| Primary || Shadow
Stack Engine Allocation Queue RAT RAT
(2x64 entries)
Micro Register

] Allocation & Renaming

4 uOPs

g The
Line Fill Buffers in action Rdhan

SPQR

add qword ptr [rax], rbx = Rec,, Rec,, LoAp,, AbD, STORE,

(D Front-end (3 Memory Pipeline
Instruction L1i Cache L2 Cache
Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way
6 MOPs Instruction 1
pOP L1d Cache Line Fill]

Instruction Queue Cache Tags
< : Buffer
(2x25 entries) o

Macro
Fusion ' [AGU INT ALU
LOAD VEC
Ps S SHUFFLE
- N IVEC ALU
Prediction Load Buffer Physical INT DI TER

Unit (72 entries) Register File i [IVEC ALU

! [IVEC MUL INT ALU
Integer FP FMA INT MUL
Buffer 0 Registers
Branch i (180 entries)
Target Buffer
‘ Vector

Execution Units

(10 entries) ' M OAD

G

coder

J2cuanbag

FP DIV. FP FMA

Bit Scan

sdor p-¢ | [xajdwo)

AES IVEC ALU
VEC STR IVEC MUL

Registers
(168 entries)

UOP Cache

1.5K pOPs -
4 OPs 8-way HOP Scheduler

ement Unit Unified Reservation Station (97 entries)

Re-order Buffer

sasng ejeq UOWWO)

Multiplexer Register Alias Table
| Primary || Shadow
Stack Engine Allocation Queue RAT RAT
(2x64 entries)
Micro Register

] Allocation & Renaming

4 uOPs

g The
Line Fill Buffers in action Rdhan

SPQR

add qword ptr [rax], rbx = Rec,, Rec,, LoAp,, AbD, STORE,

(D Front-end (3 Memory Pipeline
Instruction L1i Cache L2 Cache

Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way

6 MOPs Instruction
poP L1d Cache Line Fill

Instruction Queue Cache Tags
< ¢ Buffer
(2x25 entries)
Macro
Fusion

(10 entries)

INT ALU
VEC
Ps | SHUFFLE

- IVEC ALU
coder Prediction Physical TEA
Unit Register File

carer
Buffer 0 Registers
Branch i (180 entries)
Target Buffer
‘ Vector

G

INT ALU
INT MUL
IVECALU
IVEC MUL
FP FMA

Bit Scan

J2cuanbag

Registers
(168 entries)

sdor p-¢ | [xajdwo)

UOP Cache
1.5K pOPs
8-way

sasng ejeq UOWWO)

Re-order Buffer

10Rs HOP Scheduler

ement Unit Unified Reservation Station (97 entries)

Multiplexer Register Alias Table
| Primary || Shadow
Stack Engine Allocation Queue RAT RAT

(2x64 entries)

Micro

4 uOPs

Register
Allocation & Renaming

g The
Faults with Line Fill Buffers Redhan

SPQR

add gword ptr [], rbx = Res,, Rec, , AbD, STORE,

(D Front-end (3 Memory Pipeline
Instruction L1i Cache L2 Cache

Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way

6 MOPs Instruction
poP L1d Cache Line Fill

Instruction Queue Cache Tags
< ¢ Buffer
(2x25 entries)
Macro
Fusion

(10 entries)

INT ALU
VEC
s SHUFFLE

- IVEC ALU
coder Prediction Load Buffer Physical i

Unit (72 entries) Register File
Integer
Buffer - Registers
Branch i (180 entries)
‘ Vector

G

INT ALU
INT MUL
IVECALU
IVEC MUL
FP FMA

Bit Scan

J2cuanbag

Registers
(168 entries)

sdor p-¢ | [xajdwo)

UOP Cache
1.5K pOPs
8-way

sasng ejeq UOWWO)

Re-order Buffer

10Rs HOP Scheduler

ement Unit Unified Reservation Station (97 entries)

Multiplexer Register Alias Table
| Primary || Shadow
Stack Engine Allocation Queue RAT RAT

(2x64 entries)

Micro

4 uOPs

Register
Allocation & Renaming

g The
Faults with Line Fill Buffers Redhan

SPQR

add gword ptr [], rbx = Res,, Rec,, Loap,, ApD, STORE,

(D Front-end (3 Memory Pipeline
Instruction L1i Cache L2 Cache
Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way
6 MOPs Instruction 1
pOP L1d Cache Line Fill]

Instruction Queue Cache Tags
< : Buffer
(2x25 entries) o

Macro
Fusion ' [AGU INT ALU
LOAD VEC
Ps S SHUFFLE
- N IVEC ALU
Prediction Load Buffer Physical INT DI TER

Unit (72 entries) Register File i [IVEC ALU

! [IVEC MUL INT ALU
Integer FP FMA INT MUL
Buffer 0 Registers
Branch i (180 entries)
Target Buffer
‘ Vector

Execution Units

(10 entries) ' M OAD

G

coder

J2cuanbag

FP DIV. FP FMA

Bit Scan

sdor p-¢ | [xajdwo)

AES IVEC ALU
VEC STR IVEC MUL

Registers
(168 entries)

UOP Cache

1.5K pOPs -
4 OPs 8-way HOP Scheduler

ement Unit Unified Reservation Station (97 entries)

Re-order Buffer

sasng ejeq UOWWO)

Multiplexer Register Alias Table
| Primary || Shadow
Stack Engine Allocation Queue RAT RAT
(2x64 entries)
Micro Register

] Allocation & Renaming

4 uOPs

g The
Faults with Line Fill Buffers Redhan

SPQR

add gword ptr [], rbx = Res,, Rec,, Loap,, ApD, STORE,

(D Front-end (3 Memory Pipeline
Instruction L1i Cache L2 Cache

Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way

6 MOPs Instruction 1
pOP L1d Cache Line Fill]

Instruction Queue Cache Tags Blior
(2x25 entries)
Macro
Fusion ' [AGU INT ALU

LOAD VEC
Ps SHUFFLE

- INT AL IVEC ALU
coder Prediction Physical INT DI LEA

Unit Register File | [IVECALU

! [IVEC MUL INT ALU
Integer FP FMA INT MUL
Buffer 0 Registers
Branch i (180 entries)
Target Buffer
‘ Vector

Execution Units

(10 entries) ' M OAD

G

J2cuanbag

FP DIV. FP FMA

Bit Scan

AES IVEC ALU
VEC STR IVEC MUL

Registers
(168 entries)

sdor p-¢ | [xajdwo)

UOP Cache
1.5K pOPs
8-way

sasng ejeq UOWWO)

Re-order Buffer

10Rs HOP Scheduler

ement Unit Unified Reservation Station (97 entries)

Multiplexer Register Alias Table
| Primary || Shadow
Stack Engine Allocation Queue RAT RAT

(2x64 entries)

Micro

4 uOPs

Register
Allocation & Renaming

g The
Faults with Line Fill Buffers Redhan

SPQR

add gword ptr [], rbx = Res,, Rec,, Loap,, ApD, STORE,

(D Front-end (3 Memory Pipeline
Instruction L1i Cache L2 Cache

Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way

6 MOPs Instruction
poP L1d Cache Line Fill

Instruction Queue Cache Tags
< ¢ Buffer
(2x25 entries)
Macro
Fusion

(10 entries)

INT ALU
VEC
Ps SHUFFLE
- IVEC ALU

coder Prediction Physical TEA
Unit Register File

carer
Buffer 0 Registers
Branch i (180 entries)
Target Buffer
‘ Vector

G

INT ALU
INT MUL
IVECALU
IVEC MUL
FP FMA

Bit Scan

J2cuanbag

Registers
(168 entries)

sdor p-¢ | [xajdwo)

UOP Cache
1.5K pOPs
8-way

sasng ejeq UOWWO)

Re-order Buffer

10Rs HOP Scheduler

ement Unit Unified Reservation Station (97 entries)

Multiplexer Register Alias Table
| Primary || Shadow
Stack Engine Allocation Queue RAT RAT

(2x64 entries)

Micro

4 uOPs

Register
Allocation & Renaming

g The
Faults with Line Fill Buffers Redhan

SPQR

add gword ptr [], rbx = Res,, Rec,, Loap,, ApD, STORE,

(D Front-end (3 Memory Pipeline
Instruction L1i Cache L2 Cache
Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way
6 MOPs Instruction 1
pOP L1d Cache Line Fill]

Instruction Queue Cache Tags Blior ;

(2x25 entries) (10 entries)]

Macro

Fusion 1 INT ALU
! [LOAD VEC
Ps SHUFFLE

- INTALU IVEC ALU
Prediction Load Buffer Physical INT DIV T

Unit (72 entries) Register File i [IVEC ALU

‘ 1 [IVEC MUL! INT ALU
Ret;r:fSta(k S | Store & Forward Buffer Integer 2 Atk INT MUL
L= | (56 entries) Registers
Branch (180 entries)
Target Buffer Branch Order Buffer
branches | . Vector
(48 entries))
‘ Registers

Execution Units

coder

G

J2cuanbag

Bit Scan

sdor p-¢ | [xajdwo)

AES IVEC ALU
VEC STR IVEC MUL
UOP Cache RE-i (168 entries)
1.5K pOPs

FP DIV FP FMA
4 HOPs 8-way HOP Scheduler
Unified Reservation Station (97 entries)

sasng ejeq UOWWO)

Multiplexer Register Alias Table

| Primary || Shadow
Stack Engine Allocation Queue RAT RAT
(2x64 entries)

Micro Register
] Allocation & Renaming

Faults with Line Fill Buffers ®Ronan

Xploit

When there is a fault the pipeline is flushed
Instructions that are in-flight finish executing

e If aload allocated a LFB entry the memory transaction that would fill the
entry is aborted

= the load finish execution with a stale LFB entry

Faults with Line Fill Buffers ®Ronan

Xploit

When there is a fault the pipeline is flushed
Instructions that are in-flight finish executing

e If aload allocated a LFB entry the memory transaction that would fill the
entry is aborted

= the load finish execution with a stale LFB entry
= yes...

stale means that the data previously in the LFB entry is not overridden

Faults with Line Fill Buffers ®Ronan

Xploit

When there is a fault the pipeline is flushed
Instructions that are in-flight finish executing

e If aload allocated a LFB entry the memory transaction that would fill the
entry is aborted

= the load finish execution with a stale LFB entry
= yes...

stale means that the data previously in the LFB entry is not overridden

Yes...

This is a Hardware use after free!

SPQR

(@,} Faults with Line F|II Buffers ’ﬁﬂ%ﬂ;gn

Yes...

This is a Hardware use after free!

g _The
{ What can possibly go wrong? (ﬁmﬂggﬂ

(%]
v
&

We have potentially access to data that was previously loaded through the
caches, and it’s not cleaned

e \What data?
o Whatever recently passed through Line Fill Buffers!

g _The
{ What can possibly go wrong? (ﬁmﬂggﬂ

(%]
v
&

We have potentially access to data that was previously loaded through the
caches, and it’s not cleaned

e \What data?
o Whatever recently passed through Line Fill Buffers!

e Let's meet:

RIDL & ZomBIE LOAD

RIDL & ZombieLoad Reian

SPQR

1. Cause a fault during a cache miss which requires microcode assist
2. New data will not be loaded, so the previous value that was filled in the LFB

entry remains unchanged
3. Access the data transiently and leak it through a side channel

RIDL & ZombieLoad Reian

SPQR

1. Cause a fault during a cache miss which requires microcode assist
2. New data will not be loaded, so the previous value that was filled in the LFB

entry remains unchanged
3. Access the data transiently and leak it through a side channel

3. X = *(char *)()

€ RIDL & ZombieLoad ReGian

SPQR

W nh -

Cause a fault during a cache miss which requires microcode assist

New data will not be loaded, so the previous value that was filled in the LFB
entry remains unchanged

Access the data transiently and leak it through a side channel

char array[256 * 4096] 1. handle SIGSEGV

flush all array cache lines 2. for(i = 0; i < 256; i++)

X = *(char *)() measureTime(array[i*4096])
tmp = array[X * 4096] 3. The index with fastest access

corresponds to X

(R) . RIDL vs ZombieLoad fﬁﬂcﬁgn

X = *(char *)()

e They were developed almost concurrently
e Really similar attacks, change in how to cause fault (in crafting)

ZOMBIELOAD:

e Really fast
e A bit more complicated to setup

RIDL:
e Slower

e Really easy to setup

-\

g _The
{ Zombieload ﬁfﬁnﬁn

(%]
v
G

X = *(char *)()

° is crafted such that a microcode assist is needed to handle the fault

e variant 1;

o kand v point to the same page p

o the page IS accessible by user

s not foulting Toad |
o the page is not in the cache flush
S cacheline [« | User mapping

o = k Kernel
address

k

-‘

g _The
{ ZombielLoad f'ﬁmn;%n

(%]
v
G

X = *(char *)()

e a fault doesn’t need to be necessarily destructive (e.g. SEGFAULT)
e simply faults generated by microcode assist requests are fine
o e.g: aload that requires a page table walk will fault!!
e variant 2: (for Windows mainly)
o the windows kernel periodically clears ACCESSED BIT in the page table

o access a page with ACCESSED BIT not set

g _The
RIDL S

SPQR

X = *(char *)()

e There are lots of ways to induce leaks!
e \We don’t need necessarily invalid instructions!
o valid page faults
= mmap (... , PAGE_SIZE , ...) ;
o invalid page faults
= NULL;
o misaligned reads

= <PAGE_SIZE aligned> buf + CACHE_LINE_SIZE - 1

g _The
RIDL S

SPQR

X = *(char *)()

e There are lots of ways to induce leaks!
e \We don’t need necessarily invalid instructions!

e The leaks do not depend in any way on the address!

€ RriDL

SPQR

The simplest attack you have ever seen!

W nh -

char array[256 * 4096]
flush all array cache 1lines

*(volatile char *)(

X =
tmp

array[X * 4096]

)

—_—

g~ Th
ﬁﬂoﬁtan
Xploit

handle SIGSEGV

for(i = 0; i < 256; i++)
measureTime(array[i*4096])

The index with fastest access

corresponds to X

€ RIDL + ZombieLoad RRofar

SPQR

So we are able to intercept data in flight in the CPU

= MICROARCHITECTURAL DATA SAMPLING ATTACKS!

€ RIDL + Zombieload RRofar

SPQR

So we are able to intercept data in flight in the CPU
Which data?

e Any data that passes through the caches!
e Thanks to Intel Hyper Threading the L1 cache is shared by processes on
the same physical core

CPU
Thread

= can leak secrets used by different threads!

Thread

€ RIDL + Zombieload RRofar

SPQR

e Caches know no security domains = all use the cache!
e Anything that pass is leakable, from everywhere
e Even from different virtual machines

vm1

threadi

kernel

€) RIDL + ZombieLoad

SPQR

Caches know no security domains = all use the cache!
Anything that pass is leakable, from everywhere

Even from different virtual machines

Or even values used by the hypervisor

vimT vm2

threadi thread?2

kernel kernel

g~ Th
ﬁﬂoﬁian
Xploit

€ RIDL + ZombieLoad RRofar

SPQR

Caches know no security domains = all use the cache!

Anything that pass is leakable, from everywhere

Even from different virtual machines

Or even values used by the hypervisor

Since RIDL doesn'’t require illegal faults can mount the attack even from
javascript!

< vimT vm2
s"e

[ad1| thread?2

RIDL + ZombieLoad RRofar

SPQR

DEMO TIME!

g» _The
Microarchitectural Data Sampling (ﬁmﬂggﬂ

SPQR

e A new type of Transient execution attack
e Be able to sample for values passing in the CPU caches (or in-flight)
e You will hear also of FALLOUT among MDS attacks:

o Avariant that leaks value stored into the cache
o But the whole process is the same

. (.!' The
@ Questions? m%n;%n

SPQR

Thank you!

g _The
@ References fgﬁ%nix%n

SPQR

MUST READ:

[+] RIDL Paper: https://mdsattacks.com/files/ridl.pdf
Slides: https://mdsattacks.com/slides/slides.html (thanks for some images :))

[+] ZombielLoad Paper: https://zombieloadattack.com/zombieload.pdf

[+] Fallout Paper: https://mdsattacks.com/files/fallout.pdf

[+] Interactive guide to Speculative execution attacks:
https://mdsattacks.com/diagram.html

https://mdsattacks.com/files/ridl.pdf
https://mdsattacks.com/slides/slides.html
https://zombieloadattack.com/zombieload.pdf
https://mdsattacks.com/files/fallout.pdf
https://mdsattacks.com/diagram.html

