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Episode II
ATTACK OF THE ZOMBIES



We have seen how modern CPU leave traces of what they did during transient 
execution due to microarchitectural optimizations:

● Meltdown: Exceptions during execution are enforced lazily
⇒ There is a small window where the result of faulty instructions is 
accessible (e.g. kernel memory content!)

A long time ago, in a galaxy far, far away...

● Spectre: Predicted instructions are 
executed transiently
⇒ There is a small window of instructions 
that shouldn’t be executed, due to 
misprediction
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Meltdown idea:

● Reading Kernel Memory rises a General Protection Fault
● But we can access the value during transient execution!

 

A long time ago, in a galaxy far, far away...

1. char array[256 * 4096]

2. flush all array cache lines

3. read kernel byte into X

4. tmp = array[X * 4096]

1. handle SIGSEGV

2. for(i = 0; i < 256; i++)

measureTime(array[i*4096])

3. The index with fastest access 

corresponds to X
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Episode II

● Meltdown attacks leak secrets loading them into the L1 and L2 caches
● The secrets values are brought into the caches and then accessed by 

faulty instructions

● MITIGATION: 
isolate or mask valuable addresses
○ e.g. unmap kernel addresses from userspace

● Maybe… we should understand how caches really work

userspace

User Mode



Caches 101

● This is how we always looked at caches
1. Virtual address ⇒ Physical address
2. Get TAG and CACHE SET
3. Take PAGE OFFSET
4. Search for TAG in the CACHE SET:

a. HIT: get data
b. MISS: load data from cache

hierarchy
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1. Virtual address ⇒ Physical address
2. Get TAG and CACHE SET
3. Take PAGE OFFSET
4. Search for TAG in the CACHE SET:

a. HIT: get data
b. MISS: load data from cache

hierarchy

Wait, wait, what does it mean to load data
from cache hierarchy?!



L1 Cache Misses 101

● Let’s focus just on L1 cache!
● L1 cache will send memory request to the L2 cache

to load the requested address
● Reserve cache line to host future data

Then what?
a. Wait for completion & Block other loads/stores
b. Try to optimize it
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Now move data into the right cache line and complete the memory request
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Let’s meet the Line Fill Buffer

● It’s an internal CPU buffer, between L1d and L2 caches
● Temporary place to store data while its loading from memory
● Each L1 cache miss will have a corresponding LFB entry

where the L2 cache will load the data



Let’s meet the Line Fill Buffer

● It’s an internal CPU buffer, between L1d and L2 caches
● Temporary place to store data while its loading from memory
● Each L1 cache miss will have a corresponding LFB entry

where the L2 cache will load the data

● Just an optimization to increase memory throughput
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Yes…

This is a Hardware use after free!



What can possibly go wrong?

We have potentially access to data that was previously loaded through the 
caches, and it’s not cleaned

● What data?
○ Whatever recently passed through Line Fill Buffers!
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RIDL &  ZOMBIE LOAD



RIDL & ZombieLoad

1. Cause a fault during a cache miss which requires microcode assist
2. New data will not be loaded, so the previous value that was filled in the LFB 
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ptr?: RIDL vs ZombieLoad

● They were developed almost concurrently
● Really similar attacks, change in how to cause fault (in crafting ptr)

ZOMBIELOAD:

● Really fast
● A bit more complicated to setup

RIDL:

● Slower
● Really easy to setup

X = *(char *)(ptr)



ZombieLoad

● ptr is crafted such that a microcode assist is needed to handle the fault

● variant 1:

○ k and v point to the same page p

○ the page IS accessible by user

○ the page is not in the cache

○ ptr = k

X = *(char *)(ptr)



ZombieLoad

● a fault doesn’t need to be necessarily destructive (e.g. SEGFAULT)

● simply faults generated by microcode assist requests are fine

○ e.g: a load that requires a page table walk will fault!!

● variant 2: (for Windows mainly)

○ the windows kernel periodically clears ACCESSED BIT in the page table

○ access a page with ACCESSED BIT not set

X = *(char *)(ptr)



RIDL

● There are lots of ways to induce leaks! 

● We don’t need necessarily invalid instructions!

○ valid page faults

ptr = mmap (... , PAGE_SIZE , ...) ;

○ invalid page faults

ptr = NULL;

○ misaligned reads

ptr = <PAGE_SIZE aligned> buf + CACHE_LINE_SIZE - 1 

X = *(char *)(ptr)



RIDL

● There are lots of ways to induce leaks! 

● We don’t need necessarily invalid instructions!

● The leaks do not depend in any way on the address!

X = *(char *)(ptr)



RIDL

The simplest attack you have ever seen!

1. char array[256 * 4096]

2. flush all array cache lines

3. X = *(volatile char *)(NULL)

4. tmp = array[X * 4096]

1. handle SIGSEGV

2. for(i = 0; i < 256; i++)

measureTime(array[i*4096])

3. The index with fastest access 

corresponds to X



RIDL + ZombieLoad

So we are able to intercept data in flight in the CPU

⇒ MICROARCHITECTURAL DATA SAMPLING ATTACKS!



RIDL + ZombieLoad

So we are able to intercept data in flight in the CPU

Which data?

● Any data that passes through the caches!
● Thanks to Intel Hyper Threading the L1 cache is shared by processes on 

the same physical core

⇒ can leak secrets used by different threads!



RIDL + ZombieLoad

● Caches know no security domains ⇒ all use the cache!
● Anything that pass is leakable, from everywhere
● Even from different virtual machines 
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RIDL + ZombieLoad

● Caches know no security domains ⇒ all use the cache!
● Anything that pass is leakable, from everywhere
● Even from different virtual machines 
● Or even values used by the hypervisor
● Since RIDL doesn’t require illegal faults can mount the attack even from 

javascript!

hypervisor

vm2vm1

thread1

kernel

thread2

kernel



RIDL + ZombieLoad

 DEMO TIME!



Microarchitectural Data Sampling

● A new type of Transient execution attack
● Be able to sample for values passing in the CPU caches (or in-flight)

● You will hear also of FALLOUT among MDS attacks:
○ A variant that leaks value stored into the cache
○ But the whole process is the same



Questions?

 Thank you!
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