
Breaking the Walls 
CPU introspection through 

micro-architectural data sampling

by pietroborrello
inspired by: [CPU Introspection: Intel Load Port Snooping]

https://gamozolabs.github.io/metrology/2019/12/30/load-port-monitor.html


Let’s play a game

observe
instructions 

executed



Let’s play a game

observe
instructions 

executed



Let’s play a game

observe
instructions 

executed

observe
http

interactions



Let’s play a game

observe
instructions 

executed

observe
http

interactions



Let’s play a game

observe
instructions 

executed

observe
network
packets

observe
http

interactions



Let’s play a game

observe
instructions 

executed

observe
network
packets

observe
http

interactions



Let’s play a game

observe
instructions 

executed

observe
network
packets

observe
http

interactions

observe
CPU 

micro-arch



Let’s play a game

observe
instructions 

executed

observe
network
packets

observe
http

interactions

observe
CPU 

micro-arch



Modern CPUs

add qword ptr [rax], rbx ⇒ REGA, REGB, LOADA, ADD, STOREA  



Modern CPUs are: broken

Meltdown, Spectre, Foreshadow, MDS, ...



Modern CPUs are: undocumented

What do CPUs do:

● during speculation
● during out of order execution
● during microcode assists
● during faulting operations
● during normal execution



Modern CPUs are: undocumented

What do CPUs do:

● during speculation
● during out of order execution
● during microcode assists
● during faulting operations
● during normal execution



Modern CPUs may improve

How to find CPU vulnerabilities?

By chance Patiently reading 
Intel patents

Lack of precise CPU introspection utilities



Modern CPUs may improve

How to find CPU vulnerabilities?

How to understand inner CPU behavior?



Modern CPUs may improve

How to find CPU vulnerabilities?

How to understand inner CPU behavior?

Let’s leverage CPU vulnerabilities!



Microarchitectural Data Sampling



Microarchitectural Data Sampling

1. Cause a fault during a memory load which requires a microcode assist
2. New data will not be loaded, so the previous value that was filled in the LFB 

entry (or in the load port) remains unchanged
3. Access the data transiently and leak it through a side channel

1. char array[256 * 4096]

2. flush all array cache lines

3. X = *(char *)(ptr)

4. tmp = array[X * 4096]

1. handle SIGSEGV

2. for(i = 0; i < 256; i++)

measureTime(array[i*4096])

3. The index with fastest access 

corresponds to X



Microarchitectural Data Sampling

So we are able to leak stale data recently transferred in the CPU by sibling 
threads

⇒ We can observe any data is passing through the CPU



Microarchitectural Data Sampling

So we are able to leak stale data recently transferred in the CPU by sibling 
threads

⇒ We can observe any data is passing through the CPU

● any data



Microarchitectural Data Sampling

So we are able to leak stale data recently transferred in the CPU by sibling 
threads

⇒ We can observe any data is passing through the CPU

● any data
○ data loaded speculatively



Microarchitectural Data Sampling

So we are able to leak stale data recently transferred in the CPU by sibling 
threads

⇒ We can observe any data is passing through the CPU

● any data
○ data loaded speculatively
○ data loaded by microcode assists



Microarchitectural Data Sampling

So we are able to leak stale data recently transferred in the CPU by sibling 
threads

⇒ We can observe any data is passing through the CPU

● any data
○ data loaded speculatively
○ data loaded by microcode assists
○ data loaded by faulting instructions



Microarchitectural Data Sampling

So we are able to leak stale data recently transferred in the CPU by sibling 
threads

⇒ We can observe any data is passing through the CPU

● any data
○ data loaded speculatively
○ data loaded by microcode assists
○ data loaded by faulting instructions

WHAT : ✓



Microarchitectural Data Sampling

So we are able to leak stale data recently transferred in the CPU by sibling 
threads

⇒ We can observe any data is passing through the CPU

● any data
○ data loaded speculatively
○ data loaded by microcode assists
○ data loaded by faulting instructions

WHAT : ✓
WHEN: ✗



Timing inference

We leak the data we are interested in:

⇒ We know what data the CPU is actually using, but still not its order

0xbd09
0x4143
0xf178
0xe4e7
0x4036

0xe4e7
0x4143
0xbd09
0x4036
0xf178

0xbd09
0x4036
0xf178
0xe4e7
0x4143



Timing inference

We leak the data we are interested in:

⇒ We know what data the CPU is actually using, but still not its order

Use statistics!

0xbd09
0x4143
0xf178
0xe4e7
0x4036

0xe4e7
0x4143
0xbd09
0x4036
0xf178

0xbd09
0x4036
0xf178
0xe4e7
0x4143



Core synchronization

Victim CoreMonitoring core



Core synchronization

Victim CoreMonitoring core

1. setup attack



Core synchronization

Victim Core

2. execute actions
uop...
uop...
uop...
uop...
uop...

Monitoring core

1. setup attack
START



Core synchronization

Victim Core

2. execute actions
uop...
uop...
uop...
uop...
uop...

Monitoring core

1. setup attack
2. wait i clock cycles

START



Core synchronization

Victim Core

2. execute actions
uop...
uop...
uop...
uop...
uop...

Monitoring core

1. setup attack
2. wait i clock cycles

i. mds attack

START



Core synchronization

Victim Core

2. execute actions
uop...
uop...
uop...
uop...
uop...

restart

Monitoring core

1. setup attack
2. wait i clock cycles

i. mds attack

restart

START



Core synchronization

Victim Core

2. execute actions
uop...
uop...
uop...
uop...
uop...

restart

Monitoring core

1. setup attack
2. wait i clock cycles

i. mds attack

restart

START

i = 100

leaks: (i: 100, 0x1337)



Core synchronization

Victim Core

2. execute actions
uop...
uop...
uop...
uop...
uop...

restart

Monitoring core

1. setup attack
2. wait i clock cycles

i. mds attack

restart

START

i = 71

leaks: (i: 100, 0x1337)
       (i:  71, 0xcafe)



Core synchronization

Victim Core

2. execute actions
uop...
uop...
uop...
uop...
uop...

restart

Monitoring core

1. setup attack
2. wait i clock cycles

i. mds attack

restart

START

i = 28

leaks: (i: 100, 0x1337)
       (i:  71, 0xcafe)
       (i:  28, 0x1234)



Core synchronization

Victim Core

2. execute actions
uop...
uop...
uop...
uop...
uop...

restart

Monitoring core

1. setup attack
2. wait i clock cycles

i. mds attack

restart

START

i = 116

leaks: (i: 100, 0x1337)
       (i:  71, 0xcafe)
       (i:  28, 0x1234)
       (i: 116, 0x1337)



Core synchronization

Victim Core

2. execute actions
uop...
uop...
uop...
uop...
uop...

restart

Monitoring core

1. setup attack
2. wait i clock cycles

i. mds attack

restart

START

i = 35

leaks: (i: 100, 0x1337)
       (i:  71, 0xcafe)
       (i:  28, 0x1234)
       (i: 116, 0x1337)
       (i:  35, 0x1234)



Core synchronization

Victim Core

2. execute actions
uop...
uop...
uop...
uop...
uop...

restart

Monitoring core

1. setup attack
2. wait i clock cycles

i. mds attack

restart

START

leaks: (i: 100, 0x1337)
       (i:  71, 0xcafe)
       (i:  28, 0x1234)
       (i: 116, 0x1337)
       (i:  35, 0x1234) … millions of tries



Data analysis

leaks: (i: 100, 0x1337)
       (i:  71, 0xcafe)
       (i:  28, 0x1234)
       (i: 116, 0x1337)
       (i:  35, 0x1234)
       (i: 104, 0x1337)
       (i:  68, 0xcafe)
       (i:  38, 0x1234)
       (i:  98, 0x1337)
       (i:  40, 0x1234)
       (i: 105, 0x1337)
       (i:  70, 0xcafe)
       (i:  68, 0xcafe)
       (i: 121, 0x1337)
       (i:  30, 0x1234)

       (i:  30, 0x1234)
       (i: 104, 0x1337)
       (i: 116, 0x1337)
       (i:  71, 0xcafe)
       (i:  68, 0xcafe)
       (i:  35, 0x1234)
       (i:  28, 0x1234)
       (i:  38, 0x1234)
       (i: 105, 0x1337)
       (i:  40, 0x1234)
       (i: 121, 0x1337)
       (i:  98, 0x1337)
       (i: 100, 0x1337)
       (i:  68, 0xcafe)
       (i:  70, 0xcafe)

       (i:  70, 0xcafe)
       (i:  38, 0x1234)
       (i:  68, 0xcafe)
       (i:  35, 0x1234)
       (i:  65, 0xcafe)
       (i:  98, 0x1337)
       (i:  71, 0xcafe)
       (i:  28, 0x1234)
       (i: 109, 0x1337)
       (i: 116, 0x1337)
       (i:  40, 0x1234)
       (i: 100, 0x1337)
       (i:  30, 0x1234)
       (i: 121, 0x1337)
       (i: 104, 0x1337)...



Data analysis

i 

no leaks

0x1337



Data analysis

i 

no leaks

0x1337

0xcafe



Data analysis

i 

no leaks

0x1337

0xcafe

0x1234



Data analysis

i 

no leaks

0x1337

0xcafe

0x1234

WHAT : ✓
WHEN: ✓

0x1234 0xcafe 0x1337



And now what?

We can precisely sequence what do load ports contain:

● during speculation
● during out of order execution
● during microcode assists
● during faulting operations

WHAT : ✓
WHEN: ✓



And now what?

We can precisely sequence what do load ports contain:

● during speculation
● during out of order execution
● during microcode assists
● during faulting operations

Let’s see some examples!

WHAT : ✓
WHEN: ✓



Spectre attack

The CPU executes predicted instructions transiently

⇒ There is a small window of instructions that shouldn’t be executed, due to 
misprediction

● CPU may execute unexpected instructions
on unexpected data

for (i = 0; i < len(array); i++) {

    y += array[i]; // 0xaaaa 

}



Spectre attack



CPU Reordering

The CPU may reorder instructions that are not ready to execute

Line 2 and 3 may execute before line 1

1. a = uncached_address[0];// 0x1111

2. b = cached_address[0];  // 0x2222

3. c = cached_address[1];  // 0x3333



CPU Reordering



Processor Faults

CPU exceptions are enforced lazily:

⇒ After a faulty instruction, there is a small window of instructions that are 
still executed

Even if instruction 1 generates a fault,
instructions 2 and 3 are still executed transiently

1. a = *(NULL);

2. b = array[0];

3. c = array[1];



Processor Faults

fault here



Microcode Assists

There are different cases where the CPU automatically dispatches additional 
micro operations to be executed to deal with complex situations.

e.g. Page Table Updates:

⇒ the Page Table must be updated to set the accessed bit:

a = *never_accessed_page;



Microcode Assists



Questions?

Thank you!


