-

2 ‘I"’W" ' \§-
&5 &/,

L NSO,

i ZA
SN0 A
~—

'Q,Mn.-!cll-'lé;n ‘v" ..;‘.;:-.A,, ._ .) - l_ b 1
{) J o 1‘ H ._‘o m!‘. L I] J' ‘
Jol | | 1 1 -

r 3 ,JL, _.“_&Ai N SR TR S |

by pietroborrel

=3\

i

L N N ~

inspired by: [CPU Introspection: Intel Load Port Snooping]

https://gamozolabs.github.io/metrology/2019/12/30/load-port-monitor.html

g _The
Let’s play a game (ﬁlﬁl%n;%n

SPQR

observe

instructions
executed

Let’s play a game

SPQR

observe

instructions
executed

Let’s play a game

SPQR

observe
instructions
executed

observe
http
interactions

g _The
Let’s play a game (ﬁmn;%n

SPQR

observe
instructions
executed

observe
http
interactions

Let’s play a game

SPQR

observe
instructions
executed

observe
http

interactions

observe
network
packets

Let’s play a game

SPQR

observe
instructions
executed

observe
http

interactions

observe
network
packets

Let’s play a game

SPQR

observe
instructions
executed

observe
http
interactions

observe
network
packets

observe
CPU
micro-arch

@ Let’s play a game

SPQR

observe
instructions
executed

observe
http
interactions

observe
network
packets

observe
CPU
micro-arch

@ Modern CPUs

SPQR

add qword ptr [rax], rbx = Re,, Recy,

(3) Memory Pipeline
Instruction L1i Cache L2 Cache
Predecode & Fetch 32 kiB i 256 kiB
(16 bytes) 8-way 4-way
[Instruction |
: pOP L1d Cache Line Fill
Instruction Queue Cache Tags : 32 kiB Blitter

(Ex2lenriics) 8-way 10 entries)

Branch — |
Prediction Physical
) Register File

] INT ALU
eturn Sta Integer 1 INT MUL
Buffer !

5-way Decoder

J2cuanbag

Registers
Branch i (180 entries)

uff 3 Branch Order Buffer
branches | . Vector
‘ (48 entries)

3 Registers
HOP Cache ! (168 entries)
1.5K pOPs
8-way HOP Scheduler
Unified Reservation Station (97 entries)

Bit Scan

()
o
=)
72l
©
x
Ry
B
=
o
bl
&

sasng ejeq UOWWO)

4 uOPs

Allocation Queue
(2x64 entries)

@ Modern CPUs are: broken

SPQR

Meltdown,

J2cuanbag

Spectre, Foreshadow, MDS,

Instruction L1i Cache

Predecode & Fetch 32 kiB

(16 bytes) 8-way

Instruction
pHOP

Instruction Queue Cache Tags

(2x25 entries)

Branch

5-way Decoder Erdiction Load Buffer Physical

()
o
=)
72l
©
x
Ry
B
=
o
bl
&

Unit 72 entries) Register File

re & Forward Buffer Integer
(56 entries) Registers
i (180 entries)

- ‘ Branch Order Buffer
branches | . Vector
‘ (48 entries)

3 Registers
i (168 entries)

stores

UOP Cache
1.5K pOPs

4 uOPs 8-way

Allocation Queue
(2x64 entries)

sasng ejeq UOWWO)

) [INTALU |

INT DIV

| [VECALU ‘
 [IVEC MUL INT ALU

) [LFP FMA INT MUL
!

Bit Scan

HOP Scheduler
Unified Reservation Station (97 entries)

Xploit

Q

{ Modern CPUs are:

(%]
v
G

What do CPUs do:

during speculation

during out of order execution
during microcode assists
during faulting operations
during normal execution

undocumented

g~ Th
ﬁﬂaﬁlan
Xploit

g _The
@ Modern CPUs are: undocumented ﬁfﬁ“}%ﬂ

SPQR

What do CPUs do:

during speculation

during out of order execution
during microcode assists
during faulting operations
during

g» _The
Modern CPUs may improve (ﬁmﬂggﬂ

How to find CPU vulnerabilities?

(%]
v
&

Patiently reading

By chance Intel patents

Lack of precise CPU introspection utilities

g~ _The
@ Modern CPUs may improve (')%m";gﬁ

How to find CPU vulnerabilities?

SPQR

How to understand inner CPU behavior?

g~ _The
@ Modern CPUs may improve ’ﬁmﬂggﬁ

How to find CPU vulnerabilities?

SPQR

How to understand inner CPU behavior?

Let’s leverage CPU vulnerabilities!

SPQR

J2cuanbag

(3) Memory Pipeline

Instruction L1i Cache L2 Cache

Predecode & Fetch 32 kiB i 256 kiB

Instruction Queue Cache Tags
(2x25 entries)

5-way Decoder

()
o
=)
72l
©
x
Ry
B
=
o
bl
&

(16 bytes) 8-way 4-way

[Instruction |
pOP L1d Cache Line Fill
‘ 32 kiB Buffer
10 entries

Branch
Prediction

eturn Sta
Buffer
Branch

uff 3 ‘ Branch Order Buffer
branches | . Vector
‘ (48 entries)

3 Registers
L;()SFI)(ila()cll;‘: ‘ ‘ Re-order Buffer (168 entries)

4 uOPs 8-Way (224 entries)
Retirement Unit

Allocation Queue
(2x64 entries)

sasng ejeq UOWWO)

@ Microarchitectural Data Sampling

INT MUL

Bit Scan

HOP Scheduler
Unified Reservation Station (97 entries)

The

ﬁﬂoman

Xploit

N

W nh -

The

Microarchitectural Data Sampling ﬁfﬁ“}%n

Cause a fault during a memory load which requires a microcode assist
New data will not be loaded, so the previous value that was filled in the LFB
entry (or in the load port) remains unchanged

Access the data transiently and leak it through a side channel

char array[256 * 4096] 1. handle SIGSEGV

flush all array cache lines 2. for(i = 0; i < 256; i++)

X = *(char *)() measureTime(array[i*4096])
tmp = array[X * 4096] 3. The index with fastest access

corresponds to X

The

{ Microarchitectural Data Sampling ﬁfﬁ“}%“

(%]
v
G

So we are able to leak stale data recently transferred in the CPU by sibling
threads

= We can observe any data is passing through the CPU

The

{ Microarchitectural Data Sampling ﬁfﬁ“}%“

(%]
v
G

So we are able to leak stale data recently transferred in the CPU by sibling
threads

= We can observe any data is passing through the CPU

e any data

The

{ Microarchitectural Data Sampling ﬁfﬁ“}%“

(%]
v
G

So we are able to leak stale data recently transferred in the CPU by sibling
threads

= We can observe any data is passing through the CPU

e any data
o data loaded speculatively

The

{ Microarchitectural Data Sampling ﬁfﬁ“}%“

(%]
v
G

So we are able to leak stale data recently transferred in the CPU by sibling
threads

= We can observe any data is passing through the CPU

e any data
o data loaded speculatively

o data loaded by microcode assists

The

{ Microarchitectural Data Sampling ﬁfﬁ“}%“

(%]
v
G

So we are able to leak stale data recently transferred in the CPU by sibling
threads

= We can observe any data is passing through the CPU

e any data
o data loaded speculatively

o data loaded by microcode assists
o data loaded by faulting instructions

The

{ Microarchitectural Data Sampling ﬁfﬁ“}%“

(%]
v
G

So we are able to leak stale data recently transferred in the CPU by sibling
threads

= We can observe any data is passing through the CPU

e any data
o data loaded speculatively

o data loaded by microcode assists
o data loaded by faulting instructions

WHAT : V/

The

{ Microarchitectural Data Sampling ﬁfﬁ“}%“

(%]
v
G

So we are able to leak stale data recently transferred in the CPU by sibling
threads

= We can observe any data is passing through the CPU

e any data
o data loaded speculatively

o data loaded by microcode assists
o data loaded by faulting instructions

WHAT : V/
WHEN:

(

o

We leak the data we are interested in:

= We know what data the CPU is actually using, but still not its order

Oxbdo9
0x4143
Oxf178

Oxede7
0x4036

} Timing inference

oxede7
0x4143
0xbde9
0x4036
oxf178

Oxbdo9
0x4036
Oxf178
oxede7
0x4143

g~ Th
ﬁﬂaﬁlan
Xploit

(

o

We leak the data we are interested in:

= We know what data the CPU is actually using, but still not its order

Use statistics!

Oxbdo9
0x4143
Oxf178

Oxede7
0x4036

} Timing inference

oxede7
0x4143
0xbde9
0x4036
oxf178

Oxbdo9
0x4036
Oxf178
oxede7
0x4143

g~ Th
ﬁﬂaﬁlan
Xploit

. R f!' The
@ Core synchronization ?,51%"1'?"

SPQR

Monitoring core Victim Core

. R f!' The
@ Core synchronization ?,51%"1'?"

SPQR

Monitoring core Victim Core

1. setup attack

@ Core synchronization

SPQR

1.

Monitoring core

setup attack

2.

g~ Th
ﬁﬂoﬁian
Xploit

Victim Core

execute actions
uop. ..
uop...
uop...
uop...
uop. ..

. R f!' The
@ Core synchronization ?,51%"1'?"

SPQR

Monitoring core Victim Core

1. setup attack

2. wait 1 clock cycles . execute actions
uop. ..
uop. ..
uop. ..
uop...
uop. ..

. R f!' The
@ Core synchronization ?,51%"1'?"

SPQR

Monitoring core Victim Core

1. setup attack

2. wait 1 clock cycles . execute actions
uop. ..

i. mds attack uop. ..
uop. ..
uop...
uop. ..

. R f!' The
@ Core synchronization ?,51%"1'?"

SPQR

Monitoring core Victim Core

setup attack

wait 1 clock cycles . execute actions
uop. ..

mds attack uop. ..
uop. ..
uop...
uop. ..

restart restart

. R f!' The
@ Core synchronization ?,51%"1'?”

SPQR

Monitoring core Victim Core

setup attack %
wait 1 clock cycles . execute actions D
uop. ..
mds attack _ uop. ..
=100 uop. . .

uop...
uop...

restart restart

leaks: (i: 100, 0x1337)

. R f!' The
@ Core synchronization ?,51%"1'?”

SPQR

Monitoring core Victim Core

setup attack %

wait 1 clock cycles . execute actions D
_ uop. ..

mds attack =71 uop. ..

uop...
uop...
uop...

restart restart

leaks: (i: 100, 0x1337)
(i: 71, ©xcafe)

. R f!' The
@ Core synchronization ?,51%"1'?”

SPQR

Monitoring core Victim Core

setup attack
wait 1 clock cycles execute actions D
uop. ..
uop. ..
uop. ..
uop...

uop...

mds attack

restart restart

leaks: (i: 100, 0x1337)
(i: 71, ©xcafe)
(i: 28, 0x1234)

. R f!' The
@ Core synchronization ?,51%"1'?”

SPQR

Monitoring core Victim Core

setup attack %
wait 1 clock cycles . execute actions D
uop. ..
mds attack _ uop. ..
I'=116 uop. . .

restart restart

leaks: (i: 100, 0x1337)
(i: 71, ©xcafe)
(i: 28, 0x1234)
(i: 116, 0x1337)

. R f!' The
@ Core synchronization ?,51%"1'?”

SPQR

Monitoring core Victim Core

setup attack

wait 1 clock cycles execute actions D

mds attack

restart restart

leaks: (i: 100, 0x1337)
(i: 71, ©xcafe)
(i: 28, 0x1234)
(i: 116, 0x1337)
(i: 35, 0x1234)

. R f!' The
@ Core synchronization ?,51%"1'?”

SPQR

Monitoring core Victim Core

setup attack
wait 1 clock cycles execute actions D
uop. ..
uop. ..
uop. ..
uop...

uop...

mds attack

restart restart

leaks: (i: 100, 0x1337)
(i: 71, ©xcafe)
(i: 28, 0x1234)
(i: 116, 0x1337)
(i: 35, ©x1234) ... millions of tries

Data analysis

SPQR

leaks: (i:

i: 116,

i: 104,

i: 105,

i: 121,

100,
71,
28,

35,
68,
38,
08,
40,

70,
68,

30,

0x1337)
Oxcafe)
0x1234)
0x1337)
0x1234)
0x1337)
Oxcafe)
0x1234)
0x1337)
Ox1234)
0x1337)
Oxcafe)
Oxcafe)
0x1337)
0x1234)

(i:
i: 104,
i: 116,

i: 105,
i: 121,

i: 100,

30,

71,
68,
35,
28,
38,

40,
08,

68,
70,

0x1234)
@x1337)
@x1337)
Oxcafe)
Oxcafe)
0x1234)
Ox1234)
0x1234)
@x1337)
0x1234)
@x1337)
0x1337)
0x1337)
Oxcafe)
Oxcafe)

i: 109,
i: 116,

i: 100,

i: 121,
i: 104,

70,
38,
68,
35,
65,
98,
71,
28,

40,

30,

Oxcafe)
0x1234)
Oxcafe)
0x1234)
Oxcafe)
0x1337)
Oxcafe)
0x1234)
0x1337)
0x1337)
0x1234)
0x1337)
0x1234)
0x1337)

i

The
Roman

Xploit

0x1337)...

Data analysis

SPQR

n° leaks

A

g~ Th
ﬁﬂoﬁlan
Xploit

@ ©ox1337

Data analysis

SPQR

n° leaks

A

g~ Th
ﬁﬂoﬁlan
Xploit

@ ©ox1337
@ O9xcafe

g _The
Data analysis (ﬁlﬂ%n;%n

SPQR
A
@ 0©9x1337
@ ©Oxcafe
O ox1234
)
n° leaks o °
e
e ®
o ® °
o)
°
(¢} @ ® o
(¢} e © o e o
° e o ° o) ° .

SPQR

WHAT : vV
WHEN: v
n° leaks

Data analysis

0x1234

Oxcafe

0x1337

g~ Th
ﬁiﬂoﬁan

Xploit
@ 09x1337

@ O9xcafe
@ ox1234

g» _The
@ And now what? (t‘}%mn;%n

SPQR

We can precisely sequence what do load ports contain:

e during speculation
e during out of order execution - g
e during microcode assists I Z‘ AN
e during faulting operations g :} \
WHAT : v/
WHEN: v/
UNLIMITED POWER

g» _The
@ And now what? (ﬁlﬂ%n;%n

SPQR

We can precisely sequence what do load ports contain:

e during speculation
e during out of order execution - g
e during microcode assists l !‘ . \
e during faulting operations A \
WHAT : v/
WHEN: v/
UNLIMITED POWER

Let's see some examples!

g» _The
Spectre attack ﬂ ‘ﬁfﬁnﬂn

SPQR

The CPU executes predicted instructions transiently

= There is a small window of instructions that shouldn’t be executed, due to
misprediction

e CPU may execute unexpected instructions ,
operion

&
pe
O
[~

flush pipeline
on wrong

on unexpected data prediics

. . o
prediction

T

I 1

for (i = 0; 1 < 1en(arraY); i++) { operation #n+2 |

y += arr ay [l] ; / / @X aaaa architectural transient execution ;
@
time

{\& f!-" The
Spectre attack ﬂ ﬂlﬂmn

SPQR

2

g _The
{9) CPU Reordering (ﬁmn;%n

(%]
v
&

The CPU may reorder instructions that are not ready to execute

uncached_address[0]:// 0x1111
cached_address[0]: // 0x2222
cached_address[1]; // ©6x3333

W N =
O o o
]

Line 2 and 3 may execute before line 1

g _The
CPU Reordering ‘ﬁfﬁ:ﬁn

SPQR

0x0000000000001111
0x0000000000002222
—»- 0x0000000000003333

Delay (clock)

RRonan
Processor Faults @ XplOit

SPQR

CPU exceptions are enforced lazily:

= After a faulty instruction, there is a small window of instructions that are
still executed

L)

exception

array[0]; data A2y

1 data dependency

array[1];

_architectural | transient execution |
:

W N =
(@) o o
]

Even if instruction 1 generates a fault,
instructions 2 and 3 are still executed transiently

SPQR

(E' The
Processor Faults @ ﬂlﬂmn

fault here

g _The
{ Microcode Assists %,51%“}%”

(%]
v
G

There are different cases where the CPU automatically dispatches additional
micro operations to be executed to deal with complex situations.

e.g. Page Table Updates:

Linear Address
GLOBALDIR MIDDLE DIR

a = *never_accessed_page;

= the Page Table must be updated to set the accessed bit:

RRoman
e Assists Xpl0it

0x000000000440€067
0x0000000004410067
0x0000000013371337
0x000000049044b067
0x80000004105be143
0x80000004105be163

S X‘”(¢
xWWMW e SRR

Delay (clock)

g _The
Thank you! (ﬁlﬂ%n;%n

SPQR

Questions?

