
Constantine
Automatic Side-Channel Resistance Using Efficient

Control and Data Flow Linearization

CCS 2021
Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, Cristiano Giuffrida

Sapienza University of Rome -Vrije Universiteit Amsterdam

November 16, 2021

1

Constantine

Automatically harden
programs against

side-channel attacks

Low overhead

Strong security
guarantees High compatibility

Open source
https://github.com/pietroborrello/constantine

- carefully designed optimizations
- 16% over real-world benchmarks

completely linearize instructions
and memory accesses

- loops, raw pointers, arbitrary types
- handle real-world crypto libraries

1

Allow attackers to leak information from victim execution by observing changes in
the microarchitectural state.
e.g.
• Time taken for a program to execute
• Instruction count
• Cache effects (FLUSH+RELOAD, PRIME+PROBE)
• Port Contention

Do not consider CPU bugs & Transient Execution Attacks [36]

Software Side Channel Attacks

1

Eliminate any secret dependent computation:
• Secret dependent branches (Control Flow)
• Secret dependent memory accesses, data operand-dependent latencies

(Data Flow)

→ Any observable computation of the program does not depend on secret data

Daunting and error prone task if done manually

Constant Time Programming

Automatically transform programs into their constant-time equivalents

1

Control Flow:
• Branch Balancing [45]
• Transactional Execution [53]
• Predicated Execution [20]
→Violate data flow invariants

Data Flow:
• Cache-line preloading [62, 80]
• Oblivious RAM [53]
→ Do not consider active attackers
→ High overhead

Existing Solutions

Control Flow
Linearization

Data Flow
Linearization

1

Control Flow:
• Branch Balancing [45]
• Transactional Execution [53]
• Predicated Execution [20]
→Violate data flow invariants

Data Flow:
• Cache-line preloading [62, 80]
• Oblivious RAM [53]
→ Do not consider active attackers
→ High overhead

Existing Solutions

- instruction cache
- port contention

1

Control Flow:
• Branch Balancing [45]
• Transactional Execution [53]
• Predicated Execution [20]
→Violate data flow invariants

Data Flow:
• Cache-line preloading [62, 80]
• Oblivious RAM [53]
→ Do not consider active attackers
→ High overhead

Existing Solutions

- may crash the program
- may break invariants on decoy paths
- is it enough to unroll loops?

1

Control Flow:
• Branch Balancing [45]
• Transactional Execution [53]
• Predicated Execution [20]
→Violate data flow invariants

Data Flow:
• Cache-line preloading [62, 80]
• Oblivious RAM [53]
→ Do not consider active attackers
→ High overhead

Existing Solutions

- FLUSH+RELOAD
- bigger objects may not fit
- what about arbitrary pointers?

arr[i]
arr[i]

preload arr

1

Control Flow:
• Branch Balancing [45]
• Transactional Execution [53]
• Predicated Execution [20]
→Violate data flow invariants

Data Flow:
• Cache-line preloading [62, 80]
• Oblivious RAM [53]
→ Do not consider active attackers
→ High overhead

Existing Solutions

- 16x overhead (up to 1000x)
- may crash on arbitrary pointers

arr[i] arr[i]

oblivious memory

1

Automatically harden programs against microarchitectural side channels during
compilation
→ Introduce radical abstractions around value computations

Constantine

Control Flow
Linearization

Data Flow
Linearization

Yield secret invariant
instruction traces

Touch all the possible
locations an instruction

may reference

1

Constantine

Control Flow
Linearization

Data Flow
Linearization

Yield secret invariant
instruction traces

Touch all the possible
locations an instruction

may reference

• how to prevent crashing?
• how to minimize the

overhead?
• how to avoid state

explosion?

1

Constantine

Control Flow
Linearization

Data Flow
Linearization

Yield secret invariant
instruction traces

Touch all the possible
locations an instruction

may reference
• which branch to linearize?
• what about loops?

• how to find such locations?
• how to protect from

active attackers?

• how to prevent crashing?
• how to minimize the

overhead?
• how to avoid state

explosion?

1

The sequence of secret-dependent instructions that the CPU executes is constant
for any initial input (Program Counter Security) and secret data do not affect the
latency of each such instruction.

Control Flow Linearization

Identify Secret
Dependent
Branches

CFG Simplification

Branch Linearization

JIT Loop Linearization

1

Dynamic Taint Analysis (DFSan) provides information on sensitive program portions
that depend on inputs:
Taint Sources:
• input
• tainted variables
Taint Sinks:
• branches
• memory accesses

Leverage a profiling phase over the test suite of the original program to gather taint
information

Identify Secret Dependent Branches

1

Branch Linearization

if cond:
val = * ptr

else:
val = 0

1

Branch Linearization

vT = *ptr vF = 0

if cond

val = 𝑚𝑒𝑟𝑔𝑒(vT, vF)

1

Branch Linearization

vT = *ptr vF = 0

if cond

val = 𝑚𝑒𝑟𝑔𝑒(vT, vF)

vT = ct_load(ptr) vF = 0

taken = cond

val = ct_select(taken, vT, vF)

1

Branch Linearization

vT = ct_load(ptr) vF = 0

taken = cond

val = ct_select(taken, vT, vF)

ct_select: constant time selection primitive
• cmov [80]
• LLVM select
• multiplication
• bit operations [80]

1

Branch Linearization

vT = ct_load(ptr) vF = 0

taken = cond

val = ct_select(taken, vT, vF)

ct_select: constant time selection primitive
• cmov [80]
• LLVM select
• multiplication
• bit operations [80]

1

Branch Linearization

vT = ct_load(ptr) vF = 0

save_taken()
taken = cond

val = ct_select(taken, vT, vF)
restore_taken()

ct_select: constant time selection primitive
• cmov [80]
• LLVM select
• multiplication
• bit operations [80]

1

Branch Linearization

vT = ct_load(ptr) vF = 0

save_taken()
taken = cond

val = ct_select(taken, vT, vF)
restore_taken()

Using Branch Linearization:
• branches never depend on secret

conditions
• allow decoy paths to perform local

computations, without being globally
visible

• defer memory access linearization to
DFL

• the design poses no restriction on
code optimizations

1

Loop Linearization

What to do with loops?
• may not possible to unroll (statically unknown number of iterations)
• may be too costly to unroll (number of iterations too big)

But the number of times a loop executes may depend on secret values!

while (i > secret):
do_stuff()
i ++

while (i > 0x10000000):
if secret_condition:

break
i ++

1

Just in Time Loop Linearization

ptr[i] = v
i ++

i = 0

while i < n

1

Just in Time Loop Linearization

ptr[i] = v
i ++

i = 0

while i < n

ct_store(ptr, v)
i ++
it ++

i = 0
it = 0

cond = cfl_cond(i < n, it, MAXit)
while cond

1

Just in Time Loop Linearization

ptr[i] = v
i ++

i = 0

while i < n

ct_store(ptr, v)
i ++
it ++

i = 0
it = 0

cond = cfl_cond(i < n, it, MAXit)
while cond

cfl_cond(cond, it, MAX):

Always continue up to MAXit,
inserting padding iterations and
transitioning as a decoy path if
program execution would exit

1

Just in Time Loop Linearization

ct_store(ptr, v)
i ++
it ++

i = 0
it = 0

Using JIT Loop Linearization:
• replace the loop trip count with a

custom induction variable
• avoid explosion problems
• minimize overhead
• initialize MAXit values during the

profiling phase to avoid
initialization leaks

cond = cfl_cond(i < n, it, MAXit)
while cond

1

For each secret sensitive memory access, obliviously accesses all the locations that
the original program can possibly reference for any initial input

• Do not use shadow locations for decoy paths!
→ Accessing them would reveal the nature of the path

• Do not let dummy values concur into pointer accesses
→ Using them may break some program invariants

Data Flow Linearization

1

For each secret sensitive memory access, obliviously accesses all the locations that
the original program can possibly reference for any initial input

Data Flow Linearization

Lifetime Object Tracking

Object Field Striding

Identify Secret
Dependent
Accesses

Identify
Points-to

Information

1

Use pointer analysis (SVF framework) to collect all objects and fields a memory
access may touch

Object:
• global

• local

• dynamically allocated

Identify Points-to information

1

Use pointer analysis (SVF framework) to collect all objects and fields a memory
access may touch

Object:
• global

• local

• dynamically allocated

Identify Points-to information

access(void* ptr)
*ptr

func1()
access(obj1)

func2()
access(obj2)

ptr → {obj1, obj2}

1

Use pointer analysis (SVF framework) to collect all objects and fields a memory
access may touch

Object:
• global

• local

• dynamically allocated

→Without context information any memory access will depend on any possible
caller, and the points-to sets explode

Identify Points-to information

access(void* ptr)
*ptr

func1()
access(obj1)

func2()
access(obj2)

ptr → {obj1, obj2}

no context info!

1

Add context information by creating a function clone for every different calling
context encountered during secret dependent execution

Aggressive Function Cloning

main

func1 func2

access

main

func1 func2

access1 access2

ptr → {obj2}ptr → {obj1}

• Context sensitive pointer
analysis only where required

• Precise points-to information

1

For each secret sensitive memory access, touch all the possible objects the
instruction may refer to, but only return/update the correct location
→ protect against active attackers

Linearizing Memory Accesses

*ptr

obj1

obj2

obj3

obj4

• need to track dynamic
objects

• need a fast way to
touch all locations and
merge results

1

For each secret dependent memory access, stride each portion of each object the
memory may touch, at 𝜆 granularity (e.g. cache line granularity)

Object Field Striding

v

ret = ⊥

1

For each secret dependent memory access, stride each portion of each object the
memory may touch, at 𝜆 granularity (e.g. cache line granularity)

Object Field Striding

v

ret = ⊥

1

For each secret dependent memory access, stride each portion of each object the
memory may touch, at 𝜆 granularity (e.g. cache line granularity)

Object Field Striding

v

ret = ⊥

1

For each secret dependent memory access, stride each portion of each object the
memory may touch, at 𝜆 granularity (e.g. cache line granularity)

Object Field Striding

v

ret = ⊥

1

For each secret dependent memory access, stride each portion of each object the
memory may touch, at 𝜆 granularity (e.g. cache line granularity)

Object Field Striding

v

ret = ⊥

1

For each secret dependent memory access, stride each portion of each object the
memory may touch, at 𝜆 granularity (e.g. cache line granularity)

Object Field Striding

v

ret = v

1

For each secret dependent memory access, stride each portion of each object the
memory may touch, at 𝜆 granularity (e.g. cache line granularity)

Object Field Striding

v

ret = v

1

For each secret dependent memory access, stride each portion of each object the
memory may touch, at 𝜆 granularity (e.g. cache line granularity)

Object Field Striding

v

ret = v

1

For each secret dependent memory access, stride each portion of each object the
memory may touch, at 𝜆 granularity (e.g. cache line granularity)

Use AVX scatter & gather on bigger objects to load multiple 𝜆 − sized regions

Object Field Striding - AVX

v

ret = ⊥

1

For each secret dependent memory access, stride each portion of each object the
memory may touch, at 𝜆 granularity (e.g. cache line granularity)

Use AVX scatter & gather on bigger objects to load multiple 𝜆 − sized regions

Object Field Striding - AVX

v

ret = v

1

For each secret dependent memory access, stride each portion of each object the
memory may touch, at 𝜆 granularity (e.g. cache line granularity)

Use AVX scatter & gather on bigger objects to load multiple 𝜆 − sized regions

Object Field Striding - AVX

v

ret = v

1

Need to track lifetime for dynamically allocated + stack objects that concur in
sensitive accesses, to protect them

→ Enlarge objects allocations to insert in-band metadata

Runtime Object Tracking

datametadata

obj
next
prev
head
magic

list of all the objects
of the allocation site

use magic value to distinguish DFL objects upon
deallocation, and unlink them from the list

1

Need to track lifetime for dynamically allocated + stack objects that concur in
sensitive accesses , to protect them

→ Enlarge objects allocations to insert in-band metadata

Stack promotion: Global values do not need runtime tracking
→ Promote local variables into globals for every non-recursive

sensitive function

Runtime Object Tracking

datametadata

1

Using Data Flow Linearization:
• remove leaks from secret

dependant memory accesses
• touch a minimal set of possible

object thanks to function cloning
and SVF optimizations

• stride over fields using AVX
operations

• ensure security and memory
safety by tracking dynamic objects

Data Flow Linearization

Lifetime Object Tracking

Object Field Striding

Identify Secret
Dependent
Accesses

Identify
Points-to

Information

1

Protect cryptographic implementations against cache-level attacks (𝜆 =64) and core-
colocation attacks (𝜆 =4)

• 23 cryptographic modules extracted from a 19-KLOC codebase
• 6 microbenchmarks of standard algorithms (matmul, sorting, …)
• 5 modules of the pycrypto suite
• 3 leaky functions from OpenSSL and BearSSL

Runtime Overhead

check using:
• hw perf counters
• GEM5 simulator
• cachegrind
• PIN-tool

1

Protect cryptographic implementations against cache-level attacks (𝜆 =64) and core-
colocation attacks (𝜆 =4)

Runtime Overhead

0

10

20

30

40

50

60

70

80

Crypto functions std algorithms pycrypto suite OpenSSL/BearSSL All programs

ov
er

he
ad

 (%
)

𝜆 = 64 𝜆 = 4

1

Protect cryptographic implementations against cache-level attacks (𝜆 =64) and core-
colocation attacks (𝜆 =4)

Runtime Overhead

0

2

4

6

8

10

12

14

16

18

Crypto functions

ov
er

he
ad

 (%
)

𝜆 = 64 𝜆 = 4 SC-Eliminator Soares et al.

0

200

400

600

800

1000

1200

1400

1600

1800

std algorithms

ov
er

he
ad

 (%
)

𝜆 = 64 𝜆 = 4 Racoon

1

Linearize ECDSA modular multiplication of the non-CT WolfSSL implementation to
compare with the hand-written CT implementation

• 84 functions
• 6.28 possible object for each memory access on average

Case Study

1

Linearize ECDSA modular multiplication of the non-CT WolfSSL implementation to
compare with the hand-written CT implementation

→ aftern cloning
• 84 864 functions
• 6.28 1.08 possible object for each memory access on average

Case Study

1

Linearize ECDSA modular multiplication of the non-CT WolfSSL implementation to
compare with the hand-written CT implementation

→ aftern cloning
• 84 864 functions
• 6.28 1.08 possible object for each memory access on average

11.4x overhead w.r.t. the hand-written, carefully designed, CT ECDSA implementation
→ Constantine can handle a real-world crypto library component

Case Study

1

Conclusions

Constantine: https://github.com/pietroborrello/constantine

low overhead and strong security guarantees

introduce radical abstractions around value computations

automatically transform programs into their constant-time equivalents

in the future: Constantine for speculative constant-time guarantees

thank you

Questions?

contact: borrello@diag.uniroma1.it

References

[20] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter. Practical Mitigations for
Timing-Based Side-Channel Attacks on Modern X86 Processors. S&P 2009

[45] J. Agat. Transforming out Timing Leaks. POPL 2000

[53] A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing Digital Side-Channels through Obfuscated
Execution. USENIX SECURITY 2015

[62] L. Soares and F. Magno Quintao Pereira. Memory-Safe Elimination of Side Channels. CGO
2021

[80] M. Wu, Shengjian Guo, P. Schaumont, and C. Wang. EliminatingTiming Side-Channel Leaks
Using Program Repair. ISSTA 2018

1

Distinguish the portions of an object that can be accessed
• refine SVF field sensitivity by delaying field insensitive promotion
• apply heuristics based on duck typing when SVF fails

Refined Field Sensitivity

struct S {
long id;
char buf1[256];
short buf2[256];

};

short* ptr → objS.buf2

long* ptr → objS.id

Lifetime Object Tracking

Object Field Striding

Identify
Secret

Dependent
Accesses

Identify
Points-to

Information

1

Bring the intermediate representation of a program into normal form
• SSA
• Single-entry, single-exit regions
• Lower switch constructs into if-else sequences
• Promote indirect calls into direct ones
• Normalize Loops

CFG Normalization Identify Secret
Dependent
Branches

CFG Normalization

Branch Linearization

JIT Loop Linearization

1

Just in Time Loop Linearization-Escaping variables

ptr[i] = v
i ++

i = 0

while i < n

ptr[i] = 0

Identify Secret
Dependent
Branches

CFG Normalization

Branch Linearization

JIT Loop Linearization

1

Just in Time Loop Linearization-Escaping variables

icur = 𝜙(i,base ibody)
[…]
ibody = icur + 1

ptr[ibody] = 0

ibase = 0

while ibody < n

Identify Secret
Dependent
Branches

CFG Normalization

Branch Linearization

JIT Loop Linearization

1

Just in Time Loop Linearization-Escaping variables

icur = 𝜙(i,base ibody)
[…]
ibody = icur + 1

ptr[ibody] = 0

ibase = 0

while ibody < n

icur = 𝜙(i,base ibody)
ireal = 𝜙(⊥, iout)
[…]
ibody = icur + 1
iout = ct_select(taken, ibody, ireal)

ptr[iout] = 0

ibase = 0

cond = cfl_cond(iout < n, taken, …)
while cond

Identify Secret
Dependent
Branches

CFG Normalization

Branch Linearization

JIT Loop Linearization

